不等边三角形 编辑
几何学中,不等边三角形又称不规则三角形,是指三条的长度都不同的三角形。而满足三边不等长的三角形同时也会满足三个角不相等,反之亦然。
大多数随机绘画的三角形都是不等边的。不等边三角形的内角总是各不相同。反过来同样成立:如果一个三角形的三个内角各不相同,这个三角形便是不等边三角形,而且它的三条边也是长度都不相同。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
恰萨尔十四面体是一种可以对应到拓扑环面的非凸多面体,由阿科斯·恰萨尔于1949年发现。这个多面体中间有一个孔洞,由14个不等边三角形面组成。特别地,这个多面体不存在对角线,也就是说任两个顶点之间所形成的线段都位于其表面边界上,同时,其也对应到七的顶点的完全图。
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰立体,又称为六八面体、六角化八面体、八角化立方体、菱形四角化十二面体,虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰立体,又称为六八面体、六角化八面体、八角化立方体、菱形四角化十二面体,虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。
在几何学中,六角化五角化截角三角化四面体是一种凸多面体,且属于三角面多面体,乍看之下像是由正三角形组成,但实际上它是由多种不同的不等边三角形所组成。
在几何学中,六角化五角化倒角十二面体是一种凸多面体,且属于三角面多面体,乍看之下像是由正三角形组成,但实际上它是由多种不同的不等边三角形所组成。
在几何学中,四角化菱形十二面体是一种由48个不等边三角形组成的卡塔兰立体,又称为六八面体、六角化八面体、八角化立方体、菱形四角化十二面体,虽然其具有面可递的性质,然而由于其组成的面不是正多边形因此不能算是正多面体,其对偶多面体为大斜方截半立方体。