光电倍增管 编辑
光电倍增管,是一种对紫外光可见光和近红外光极其敏感的特殊真空管。它能使进入的微弱光信号增强至原本的10倍,使光信号能被测量。
1
相关
闪烁体探测器是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。辐射引起物质发光的现象很早就被人们所关注和利用:早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测Α粒子。不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。1947年Coltman和Marshall成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。之后随着光电倍增管等微光探测器件的应用和相关技术的进步,闪烁体探测器得到了非常迅速的发展,各种新型闪烁体材料层出不穷。由于具有探测效率高、分辨时间短、使用方便、适用性广等特点,闪烁体探测器在某些方面的应用已超过气体探测器,并为Γ射线谱学的形成和发展提供了可能。
闪烁体探测器是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。辐射引起物质发光的现象很早就被人们所关注和利用:早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测Α粒子。不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。1947年Coltman和Marshall成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。之后随着光电倍增管等微光探测器件的应用和相关技术的进步,闪烁体探测器得到了非常迅速的发展,各种新型闪烁体材料层出不穷。由于具有探测效率高、分辨时间短、使用方便、适用性广等特点,闪烁体探测器在某些方面的应用已超过气体探测器,并为Γ射线谱学的形成和发展提供了可能。
闪烁体探测器是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。辐射引起物质发光的现象很早就被人们所关注和利用:早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测Α粒子。不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。1947年Coltman和Marshall成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。之后随着光电倍增管等微光探测器件的应用和相关技术的进步,闪烁体探测器得到了非常迅速的发展,各种新型闪烁体材料层出不穷。由于具有探测效率高、分辨时间短、使用方便、适用性广等特点,闪烁体探测器在某些方面的应用已超过气体探测器,并为Γ射线谱学的形成和发展提供了可能。
埃弗哈特-索恩利探测器或E-T探测器是一类可以探测二次电子和背散射电子的传感器,被用于扫描电子显微镜中。埃弗哈特-索恩利探测器得名于其设计者托马斯·E·埃弗哈特和理查德·F·M·索恩利。他们在1960年发表的设计中把光管加入到真空腔外的光电倍增管,以处理来自于SEM真空腔中闪烁体探测器的信号,由此提升了二次电子探测器的效率。此前,埃弗哈特已经对弗拉基米尔·佐利金和J·A·拉哈彻曼设计的二次电子探测器做出改进,将其中的电子倍增管改为光电倍增管。包含光波导和高探测效率的光电倍增管的E-T探测器已经成为了SEM中最常用的探测器。