大地水准面是指地球重力场中,与处于自由静止状态的海平面相重合或最为接近的重力位。这一概念最早由德国大地测量学家卡尔·弗里德里希·高斯在1828年提出。当时,高斯以“地球的数学表面”来指称与重力方向相垂直、且与静止的平均海水面相重合的几何表面,并提出将其作为高程系统的基准面。其后,高斯的学生利斯廷于1873年创造出了“Geoid”一词,用以描述高斯所提出的数学表面。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。
莫比乌斯带,又译梅比斯环、莫比乌斯环或麦比乌斯带,是一种只有一个面和一条边界的曲面,也是一种重要的拓扑学结构。它是由德国数学家、天文学家奥古斯特·费迪南德·莫比乌斯和利斯廷在1858年独立发现的。这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来。事实上有两种不同的莫比乌斯带镜像,他们相互对称。如果把纸带顺时针旋转再粘贴,就会形成一个手性的莫比乌斯带,反之亦类似。