加伯转换 编辑
相关
广义多项式韦格纳频谱图,是一种用于时频分析的方法,属于信号处理的范畴。一个好的时频分析讲求在频谱图上要有高的分辨率,并且不能有相交项,才能得到准确的瞬时频率,但这两点之间常须进行取舍。韦格纳分布虽然分辨率较高,但在许多情况下会有相交项,例如瞬时频率为高阶指数函数时或多组件时;在瞬时频率为高阶指数函数时多项式韦格纳分布除了能保有高分辨率之外还能消除相交项,但在多组件情况下的相交项仍然存在;加伯转换没有相交项,但分辨率较低,广义频谱图虽然强化了加伯转换的分辨率,但仍比韦格纳分布来得模糊。
音乐信号时频分析为时频分析应用之一。音乐声音可以比人声更加复杂,占用更宽的频带,音乐信号为随时间变化的信号,只使用单纯的傅立叶转换无法清楚分析,所以利用时间-频率分析做更有效的分析工具。时频分析为传统傅立叶变换延伸版。短时距傅立叶变换、加伯转换与维格纳分布最被广泛使用之时频分析方法,对于分析音乐信号也相当管用。
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。