单位区间 编辑
区间在数学上是指某个范围的数的集合,一般以集合形式表示。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
直角坐标系中坐标在 处的单位正方形是 x 与 y 坐标都在单位区间 0 到 1 之内的正方形。
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)
在数学中,如果欧几里得空间 R 的子集是闭集且是有界集合的,那么称它是的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是,半开区间[0, 1)(它不是闭合的)