双曲空间 编辑
双曲几何又名罗氏几何,是非欧几里德几何的一种特例。与欧几里德几何的差别在于第五条公理-平行公设。在欧几里德几何中,若平面上有一条直线R和线外的一点P,则存在唯一的一条线满足通过P点且不与R相交。但在双曲几何中,至少可以找到两条相异的直线,且都通过P点,并不与R相交,因此它违反了平行公设。然而,取代欧几里德几何中的平行公设的双曲几何本身并无矛盾之处,仍可以推得一系列属于它的定理,这也说明了平行公设独立于前四条公设,换句话说,无法由前四条公设推得平行公设
3
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
六维空间 是指任何拥有六个维度的空间,六自由度,并且需要六个数据或坐标来指定该空间中的位置。这些座标可以有无限多种 但最有趣的是更简单的模型的一些方面的环境。 其中最有趣的是六维欧几里得空间, 在其之中可构造出六维多胞形以及五维球面。 六维有限空间 以及 双曲空间同时也被研究,具有恒定的正和负曲率。
此页面列出了所有的欧几里得空间、双曲空间和球形空间的正图形或正多胞形。施莱夫利符号可以描述每一个正图形或正多胞形,他被广泛使用如下面的每一个紧凑的参考名称。
此页面列出了所有的欧几里得空间、双曲空间和球形空间的正图形或正多胞形。施莱夫利符号可以描述每一个正图形或正多胞形,他被广泛使用如下面的每一个紧凑的参考名称。
此页面列出了所有的欧几里得空间、双曲空间和球形空间的正图形或正多胞形。施莱夫利符号可以描述每一个正图形或正多胞形,他被广泛使用如下面的每一个紧凑的参考名称。
此页面列出了所有的欧几里得空间、双曲空间和球形空间的正图形或正多胞形。施莱夫利符号可以描述每一个正图形或正多胞形,他被广泛使用如下面的每一个紧凑的参考名称。
数学与物理学中,一个n维反德西特空间,标作AdSn为一最大对称的劳仑兹流形,具有负常数的纯量曲率。其为双曲空间的劳仑兹类比,一如闵考斯基空间与德西特空间分别为欧几里得空间与椭圆空间的类比。
六维空间 是指任何拥有六个维度的空间,六自由度,并且需要六个数据或坐标来指定该空间中的位置。这些座标可以有无限多种 但最有趣的是更简单的模型的一些方面的环境。 其中最有趣的是六维欧几里得空间, 在其之中可构造出六维多胞形以及五维球面。 六维有限空间 以及 双曲空间同时也被研究,具有恒定的正和负曲率。