可微函数 编辑
可微分函数在微积分学中是指那些在定义域中所有点都存在导数的函数。可微函数的函数图象在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。
2
相关
微分拓扑是一个处理在微分流形上的可微函数的数学领域。很自然地,它是在研究微分方程理论的过程中被提出来的。微分几何是用微积分来研究几何的学问。这些领域非常接近,在物理学,特别在相对论方面有许多的应用。它们合在一起还建立了可从动力系统观点直接研究的、
可微流形的几何理论。
射流,也称节在数学中是指取一个可微函数f并在其定义域的每一点产生一个多项式,也就是f的截尾泰勒多项式的操作。虽然这是一个射流的定义,射流理论将这些多项式作为多项式而不是多项式函数。
在数学上,一个可微函数的实函数或复函数



f


{\displaystyle f}

的临界点是指在



f


{\displaystyle f}

的定义域中导数为 0 的点 。对于一个多变数实函数而言,临界点是在定义域中所有偏导数为 0 的点。一个函数的临界点的函数值称为临界值。
S型函数是一种函数,因其函数图像形状像字母S得名。其形状曲线至少有2个焦点,也叫“二焦点曲线函数”。S型函数是有界函数、可微函数的实函数,在实数范围内均有取值,且导数恒为非负,有且只有一个拐点。S型函数和S型曲线指的是同一事物。
微分拓扑是一个处理在微分流形上的可微函数的数学领域。很自然地,它是在研究微分方程理论的过程中被提出来的。微分几何是用微积分来研究几何的学问。这些领域非常接近,在物理学,特别在相对论方面有许多的应用。它们合在一起还建立了可从动力系统观点直接研究的、
可微流形的几何理论。
微分拓扑是一个处理在微分流形上的可微函数的数学领域。很自然地,它是在研究微分方程理论的过程中被提出来的。微分几何是用微积分来研究几何的学问。这些领域非常接近,在物理学,特别在相对论方面有许多的应用。它们合在一起还建立了可从动力系统观点直接研究的、
可微流形的几何理论。
S型函数是一种函数,因其函数图像形状像字母S得名。其形状曲线至少有2个焦点,也叫“二焦点曲线函数”。S型函数是有界函数、可微函数的实函数,在实数范围内均有取值,且导数恒为非负,有且只有一个拐点。S型函数和S型曲线指的是同一事物。
复分析中的柯西-黎曼微分方程,又称柯西-黎曼条件。是提供了可微函数在开集中为全纯的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。
S型函数是一种函数,因其函数图像形状像字母S得名。其形状曲线至少有2个焦点,也叫“二焦点曲线函数”。S型函数是有界函数、可微函数的实函数,在实数范围内均有取值,且导数恒为非负,有且只有一个拐点。S型函数和S型曲线指的是同一事物。
复分析中的柯西-黎曼微分方程,又称柯西-黎曼条件。是提供了可微函数在开集中为全纯的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。