大霹雳 编辑
大爆炸,是描述宇宙的起源与演化的宇宙学模型,这一模型得到了当今科学研究和观测最广泛且最精确的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的膨胀到达今天的状态。
9
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
氦是一种化学元素,其化学符号为He,原子序数为2,原子量为7000400260200000000♠4.002602 u。是一种无色、无臭、无味、无毒的惰性单原子气体。它也是18族元素族的第一个元素。熔点和沸点为所有元素中最低的。继氢原子之后,氦是可观宇宙中第二轻且含量第二高的元素,在全宇宙的元素质量中大约占了24%,超过其它原子总和的12倍。它的总含量和太阳或木星内的比例十分相似。这是因为和接下来三个元素比较起来,氦-4有非常高的核结合能。而它的高结合能也能解释为何它是核融合与核衰变的产物。氦-4是宇宙中氦最主要的同位素,最广泛的来源形成于大霹雳时期。而新的氦形成于恒星内部的核融合反应。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
是一种化学元素,其化学符号为He,原子序数为2,原子量为7000400260200000000♠4.002602 u。是一种无色、无臭、无味、无毒的惰性单原子气体。它也是18族元素族的第一个元素。熔点和沸点为所有元素中最低的。继氢原子之后,氦是可观宇宙中第二轻且含量第二高的元素,在全宇宙的元素质量中大约占了24%,超过其它原子总和的12倍。它的总含量和太阳或木星内的比例十分相似。这是因为和接下来三个元素比较起来,氦-4有非常高的核结合能。而它的高结合能也能解释为何它是核融合与核衰变的产物。氦-4是宇宙中氦最主要的同位素,最广泛的来源形成于大霹雳时期。而新的氦形成于恒星内部的核融合反应。
夸克-胶子电浆,俗称夸克汤,是一种量子色动力学下的相态,所处环境为极高温度与极高密度。据信这种状态存在于大霹雳宇宙诞生后的最初20或30微秒。欧洲核子研究中心所属的超级质子同步加速器的实验首先尝试创造出QGP,时间大约是1980年代与1990年代,而且可能已达成部分的成就。目前,布鲁克哈芬国家实验室的相对论性重离子对撞机的实验正接续这项工作。CERN的新型实验——大型离子对撞机实验和超环面仪器实验都已在大型强子对撞机展开。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙背景探测者,也称为探险家66号 ,是建造来探索宇宙论的第一颗卫星。他的目的是调查宇宙间的宇宙微波背景辐射,而测量和提供的结果将可以协助提供我们了解宇宙的形状,这工作也将可以巩固宇宙的大霹雳理论。根据诺贝尔奖委员会的看法:“宇宙背景探测的计划可以视为宇宙论成为精密科学的起点。”

这个计划的两位主要研究员,乔治·斯穆特和约翰·马瑟在2006年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
夸克-胶子电浆,俗称夸克汤,是一种量子色动力学下的相态,所处环境为极高温度与极高密度。据信这种状态存在于大霹雳宇宙诞生后的最初20或30微秒。欧洲核子研究中心所属的超级质子同步加速器的实验首先尝试创造出QGP,时间大约是1980年代与1990年代,而且可能已达成部分的成就。目前,布鲁克哈芬国家实验室的相对论性重离子对撞机的实验正接续这项工作。CERN的新型实验——大型离子对撞机实验和超环面仪器实验都已在大型强子对撞机展开。
临界宇宙是指一种宇宙存在的型态,其弗里德曼方程



Ω



{\displaystyle \Omega \,}

= 1。定义一个宇宙开始扩张的临界速率,若在宇宙扩张之初,物质的运动速率大于临界速率,则物质间的重力将无法阻止宇宙扩张的倾向,反之,有一天,宇宙会停止扩张并开始收缩。最后,所有的物质收缩到一个没有体积的点上,也就是大霹雳初始状态的引力奇点。若宇宙扩张的初始速率刚好等于临界速率,则宇宙会保持不断扩张的最小初始速率,也就是临界宇宙。