宇宙年龄 编辑
宇宙年龄是指自宇宙大爆炸开始至今所经历的宇宙历史时间,当今天文学界理论和观测皆一致认为这个年龄介于137亿-138亿年之间。这个不确定的区间是从多个科研项目的研究结果的共识中取得的,其中使用的先进科研仪器和方法已经能够将测量精度提升到相当高的量级。这些科研项目包括对宇宙微波背景辐射的测量以及对宇宙膨胀的多种测量手段。对宇宙微波背景辐射的测量给出了宇宙自大爆炸以来的冷却时间,而对宇宙膨胀的测量则给出了能够计算宇宙年龄的精确数据。据2013年由普朗克卫星所得的观测结果,宇宙大爆炸的时间点落在距今137.98±0.37亿年前;而2015年的更新数据显示为137.87±0.02亿年前。
2
相关
阿秒,符号 as,是一种时间的国际单位制,为 10 秒,或 1/1000 飞秒。比例上,一阿秒之于一秒,如同一秒之于 317.1 亿年,约为宇宙年龄的两倍。
,是一种化学元素,其化学符号为Rb,原子序数为37,原子量为7001854678000000000♠85.4678 u。铷是种质软、呈银白色的金属,属于碱金属。单质铷的反应性极高,其性质与其他碱金属相似,例如会在空气中快速氧化。自然出现的铷元素由两种同位素组成:Rb是唯一一种稳定同位素,占72%;Rb具微放射性,占28%,其半衰期为490亿年,超过宇宙年龄的三倍。
可观测宇宙是一个以观测者作为中心的球体空间,小得足以让观测者观测到该范围内的物体,也就是说物体发出的光有足够时间到达观测者。截至2013年对宇宙年龄最精确的估计是7002137979999999999♠137.98±0.37 亿年。但由于宇宙的膨胀,可观测宇宙的半径并不是固定的138亿光年,人类所观测的古老天体当前的距离比起其原先的位置要遥远得多。现在推测可观测宇宙半径约为465亿光年,直径约为930亿光年。根据宇宙学原理,从任何方向到可观测宇宙边缘的距离大致是相等的。
恒星演化是恒星随着时间的推移而变化的过程。根据恒星的质量,它的寿命可以从质量最大恒星的几百万年到质量最小恒星的万亿年,这是比宇宙年龄还要长许多的时间。这张表格显示恒星寿命与其质量的关联性。 所有的恒星都诞生于气体和尘埃云,也就是通常所说的星云或分子云。纤维状结构遍布在分子云中,致密纤维状结构会碎裂成星前云核,也就是恒星的前身。纤维状结构的具体碎裂模式与其对周围气体的吸积、几何弯曲和磁场相关。在超临界的纤维状结构中已经发现了,致密云核的准周期链状结构,典型的云核投影间距接近纤维状结构的宽度,云核处于自引力束缚状态,有的云核已经孕育出了原恒星。在数百万年的时间里,这些原恒星达到稳定的状态,成为所谓的主序带中的恒星。
恒星演化是恒星随着时间的推移而变化的过程。根据恒星的质量,它的寿命可以从质量最大恒星的几百万年到质量最小恒星的万亿年,这是比宇宙年龄还要长许多的时间。这张表格显示恒星寿命与其质量的关联性。 所有的恒星都诞生于气体和尘埃云,也就是通常所说的星云或分子云。纤维状结构遍布在分子云中,致密纤维状结构会碎裂成星前云核,也就是恒星的前身。纤维状结构的具体碎裂模式与其对周围气体的吸积、几何弯曲和磁场相关。在超临界的纤维状结构中已经发现了,致密云核的准周期链状结构,典型的云核投影间距接近纤维状结构的宽度,云核处于自引力束缚状态,有的云核已经孕育出了原恒星。在数百万年的时间里,这些原恒星达到稳定的状态,成为所谓的主序带中的恒星。
铷,是一种化学元素,其化学符号为Rb,原子序数为37,原子量为7001854678000000000♠85.4678 u。铷是种质软、呈银白色的金属,属于碱金属。单质铷的反应性极高,其性质与其他碱金属相似,例如会在空气中快速氧化。自然出现的铷元素由两种同位素组成:Rb是唯一一种稳定同位素,占72%;Rb具微放射性,占28%,其半衰期为490亿年,超过宇宙年龄的三倍。
铷,是一种化学元素,其化学符号为Rb,原子序数为37,原子量为7001854678000000000♠85.4678 u。铷是种质软、呈银白色的金属,属于碱金属。单质铷的反应性极高,其性质与其他碱金属相似,例如会在空气中快速氧化。自然出现的铷元素由两种同位素组成:Rb是唯一一种稳定同位素,占72%;Rb具微放射性,占28%,其半衰期为490亿年,超过宇宙年龄的三倍。
阿秒,符号 as,是一种时间的国际单位制,为 10 秒,或 1/1000 飞秒。比例上,一阿秒之于一秒,如同一秒之于 317.1 亿年,约为宇宙年龄的两倍。
可观测宇宙是一个以观测者作为中心的球体空间,小得足以让观测者观测到该范围内的物体,也就是说物体发出的光有足够时间到达观测者。截至2013年对宇宙年龄最精确的估计是7002137979999999999♠137.98±0.37 亿年。但由于宇宙的膨胀,可观测宇宙的半径并不是固定的138亿光年,人类所观测的古老天体当前的距离比起其原先的位置要遥远得多。现在推测可观测宇宙半径约为465亿光年,直径约为930亿光年。根据宇宙学原理,从任何方向到可观测宇宙边缘的距离大致是相等的。
可观测宇宙是一个以观测者作为中心的球体空间,小得足以让观测者观测到该范围内的物体,也就是说物体发出的光有足够时间到达观测者。截至2013年对宇宙年龄最精确的估计是7002137979999999999♠137.98±0.37 亿年。但由于宇宙的膨胀,可观测宇宙的半径并不是固定的138亿光年,人类所观测的古老天体当前的距离比起其原先的位置要遥远得多。现在推测可观测宇宙半径约为465亿光年,直径约为930亿光年。根据宇宙学原理,从任何方向到可观测宇宙边缘的距离大致是相等的。