安德烈-路易·科列斯基 编辑
安德烈-路易·科列斯基是一名法国军官、数学家
3
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
线性代数中,科列斯基分解是指将一个正定矩阵的埃尔米特矩阵分解成一个三角矩阵与其共轭转置之乘积。这种分解方式在提高代数运算效率、蒙特卡罗方法等场合中十分有用。实数矩阵的科列斯基分解由安德烈-路易·科列斯基最先发明。实际应用中,科列斯基分解在求解线性方程组中的效率约两倍于LU分解。
线性代数中,科列斯基分解是指将一个正定矩阵的埃尔米特矩阵分解成一个三角矩阵与其共轭转置之乘积。这种分解方式在提高代数运算效率、蒙特卡罗方法等场合中十分有用。实数矩阵的科列斯基分解由安德烈-路易·科列斯基最先发明。实际应用中,科列斯基分解在求解线性方程组中的效率约两倍于LU分解。
线性代数中,科列斯基分解是指将一个正定矩阵的埃尔米特矩阵分解成一个三角矩阵与其共轭转置之乘积。这种分解方式在提高代数运算效率、蒙特卡罗方法等场合中十分有用。实数矩阵的科列斯基分解由安德烈-路易·科列斯基最先发明。实际应用中,科列斯基分解在求解线性方程组中的效率约两倍于LU分解。
线性代数中,科列斯基分解是指将一个正定矩阵的埃尔米特矩阵分解成一个三角矩阵与其共轭转置之乘积。这种分解方式在提高代数运算效率、蒙特卡罗方法等场合中十分有用。实数矩阵的科列斯基分解由安德烈-路易·科列斯基最先发明。实际应用中,科列斯基分解在求解线性方程组中的效率约两倍于LU分解。
线性代数中,科列斯基分解是指将一个正定矩阵的埃尔米特矩阵分解成一个三角矩阵与其共轭转置之乘积。这种分解方式在提高代数运算效率、蒙特卡罗方法等场合中十分有用。实数矩阵的科列斯基分解由安德烈-路易·科列斯基最先发明。实际应用中,科列斯基分解在求解线性方程组中的效率约两倍于LU分解。
线性代数中,科列斯基分解是指将一个正定矩阵的埃尔米特矩阵分解成一个三角矩阵与其共轭转置之乘积。这种分解方式在提高代数运算效率、蒙特卡罗方法等场合中十分有用。实数矩阵的科列斯基分解由安德烈-路易·科列斯基最先发明。实际应用中,科列斯基分解在求解线性方程组中的效率约两倍于LU分解。