宏观 编辑
宏观尺度是指可以用肉眼量度观察的物体的尺度。当用在现象或抽象物体时,则是描述,我们所能理解,存在于这世界上的。宏观尺度通常大致在1毫米至1公里之间。
1
相关
表面科学主要研究的是发生在两种相的界面上的物理和化学现象,其子领域包括和。表面科学的相关实际应用常被称为材料表面工程,其中的概念包括多相催化、半导体器件制造、燃料电池、自组装单分子薄膜、黏合剂等。表面科学和界面与胶体科学密切相关;而界面化学和物理是双方的共同课题。此外,界面与胶体科学也研究发生在异质系统中由于界面的奇异性所引发的宏观现象。
介观物理学是物理学中一个新的分支学科。“介观”这个词汇,由Van Kampen于1981年所创,指的是介乎于微观和宏观之间的尺度。介观物理学所研究的物质尺度和纳米科技的研究尺度有很大重合,所以这一领域的研究常被称为“介观物理和纳米科技”。介观的特征尺度为:10~10m。
配分函数是一个统计物理中经常应用到的概念,经由计算配分函数可以将微观物理状态与宏观物理量相互联系起来,而配分函数等价于自由能,与路径积分在数学上有巧妙的类似。配分函数通常意指正则系综中的配分函数,而其他的系综,亦有其相对应的配分函数,如巨正则系综对应巨配分函数。
介观物理学是物理学中一个新的分支学科。“介观”这个词汇,由Van Kampen于1981年所创,指的是介乎于微观和宏观之间的尺度。介观物理学所研究的物质尺度和纳米科技的研究尺度有很大重合,所以这一领域的研究常被称为“介观物理和纳米科技”。介观的特征尺度为:10~10m。
冰晶是冰的宏观晶体形式。冰晶在光学及电学等物理性质方面有各向异性,并且具有较高的介电常数。冰晶常呈六角柱状、六角板状、枝状、针状等形状,由于大气中的冰晶一般由水蒸气凝华产生,因此具有非常对称的外型。在不同的环境温度和湿度中,可以产生不同的对称外形。当环境因素改变时,冰晶的形成方式也可能会改变,因此最终形成的晶体可能是多种样式混合而成的,例如冠柱晶。空中的冰晶下落时倾向以其侧棱平行于地平线,因此能以增强的差动反射率在偏振天气雷达信号中被发现。冰晶带电荷后,下落的方向便不再平行于地平线。带电的冰晶也很较容易被偏振天气雷达检测出来。
玻色–爱因斯坦凝聚是玻色子原子在冷却到接近绝对零度所呈现出的一种气体的、超液体的物质状态。1995年,麻省理工学院的沃夫冈·凯特利与科罗拉多大学博尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170 n热力学温标的低温下首次获得了玻色-爱因斯坦。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。
经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理学里,经典力学是最早被接受为力学的一个基本纲领。经典力学又分为静力学、运动学和动力学。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。
物理学在微观的层次几乎完全是对称性的,这意味着物理学定律在时间流易的方向倒转之后仍然保持为真。但是在宏观层次却显得并不是那么回事:时间存在着明显的方向性。时间剑头就是用于描述这种不对称的现象。
有效介质近似理论是一种用来描述复合材料宏观性质的计算机模拟或科学理论的模型。此理论将复合材料中各个成分的性质通过平均计算来得出复合材料的性质。由于构成复合材料的各个成分的参数各异且往往同质与异质,完全精确的计算几乎是不可能的。因此,有效介质近似理论将复合材料作为一个整体,近似计算出其参数和性质。目前,这种理论已经能够给出可接受的近似值。从这个意义上说,有效介质近似是一种基于其组成成分的性质和含量来描述某种介质总体性质的计算方法。
奈尔温度,TN,指的是反铁磁性材料转变为顺磁性材料所需要达到的温度。在这个温度的时候,晶体内部的原子内能会大到足以破坏材料内部宏观磁性排列,从而发生相变,由反铁磁性转变为顺磁性。