尺度不变特征转换 编辑
尺度不变特征转换是一种机器视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变数,此算法由 David Lowe 在1999年所发表,2004年完善总结。

后续的论文中也有许多基于 SIFT 改进的论文,例如 SURF 将 SIFT 的许多过程近似,达到加速的效果;PCA-SIFT利用主成分分析降低描述子的维度,减少内存的使用并加快配对速度。
4
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]