基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线的名字来自对于地球尺寸与形状的大地测量学。
理论物理学中,彭罗斯图是用于描述时空中不同两点所发生事件的因果律的二维示意图。彭罗斯图是闵可夫斯基图的广义相对论推广,而最大区别是彭罗斯图上的度规和时空中的真实度规能够局部地共形等价,即能够通过共形变换使全部的时空流形转换到彭罗斯图的有限区域中去。对于球对称的时空,彭罗斯图上的每一点代表一个二维球。
测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线的名字来自对于地球尺寸与形状的大地测量学。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
测地线又称大地线或短程线,数学上可视作直线在弯曲空间中的推广;在有度规定义存在之时,测地线可以定义为空间中两点的局域最短路径。测地线的名字来自对于地球尺寸与形状的大地测量学。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
理论物理学中,以理查德·阿诺维特、斯坦利·德塞尔及查尔斯·米斯纳三人姓氏字首为名的ADM质量或等价地称ADM能量是一个于广义相对论定义能量的特殊方法。此法只能应用到一些特别的时空几何,这些几何可以渐进式地接近一个在无限远处有良好定义的度规,举例来说:能渐进式地接近闵可夫斯基时空的一种时空几何。在这些例子中的ADM能量定义为此度规张量与其渐进接近的度规张量偏离程度之函数。换句话说,ADM能量是在无限远处重力场强度的计量。