扭歪多面体 编辑
几何学中,扭歪多面体是指顶点、边或面并非全部位于同一个三维空间中的多面体,即扭歪多边形的高一维类比,因此其无法找到一个唯一的内部区域以及其体积
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在几何学中,正多面体是同时具有等边、等角和等面特性的多面体。在经典语境中,有许多描述上不同但实际上等价的定义存在,最常见的定义是每个面都是全等的正多边形,且每个顶点都是相同数量且相同种类之正多边形的公共顶点。例如立方体是一种正多面体,其每个面都是正方形,且每个顶点都是3个正方形的公共顶点。在中文环境中,一般被大众认知的正多面体通常代表只有五种的凸正多面体,又称为柏拉图立体,其包括了正四面体、立方体、正八面体、正十二面体和正二十面体。然而在定义上,正多面体仅指每个面是正多边形、每条边等长每个角等角且每面全等的多面体,而符合上述定义的多面体不一定是凸多面体,也可能是星形多面体、抽象多面体或扭歪多面体等。这些多面体除了五种凸正多面体外,还有四种非凸正多面体、五种抽象正多面体和五种复合正多面体。
在几何学中,六角四片四角孔扭歪无限面体 是一种正扭歪无限面体,是一个由六边形组成且发散的多面体,其多面体所形成的结构无法包覆一个三维空间区域,因此属于扭歪多面体,其可以视为从截角八面体堆砌中移除所有正方形之后所形成的几何结构。
在几何学中,扭歪无限面体是一种顶点并非全部共面的无限面体,存在非平面的面或非平面的顶点图,并保持图形不折回形成封闭区间而无限延伸。其也可以看作是面数无穷的扭歪多面体。由于该多面体所形成的空间有如海绵般有很多孔洞,因此又称为海绵多面体。
在几何学中,六角四片四角孔扭歪无限面体 是一种正扭歪无限面体,是一个由六边形组成且发散的多面体,其多面体所形成的结构无法包覆一个三维空间区域,因此属于扭歪多面体,其可以视为从截角八面体堆砌中移除所有正方形之后所形成的几何结构。
在几何学中,五阶正方形镶嵌是由正方形组成的双曲正镶嵌图,在施莱夫利符号中用{4,5}表示,代表了每个顶点皆为五个正方形的公共顶点,因此每个顶点周围皆包含了五个不重叠的正方形,一个正方形内角90度,五个正方形超过了360度,因此无法因此无法在平面上作出,但可以在双曲面上作出,或是以扭歪多面体的方式呈现。