解析几何,又称为坐标几何或卡氏几何,早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球面等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
次摆线,又称为余摆线、变幅摆线,是指当一个圆沿一条给定直线滚动时,固定在圆所在平面内一定点经过的轨迹。摆线是最常见的一种次摆线。
一般旋轮线,又称为转迹线、轮转曲线等,是一类曲线的统称,指一条动曲线沿一条定曲线无滑动地滚动时,动曲线上的一定点所形成的轨迹,包括摆线、外摆线、内摆线、次摆线、渐伸线等。
解析几何,又称为坐标几何或卡氏几何,早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球面等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
解析几何,又称为坐标几何或卡氏几何,早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球面等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
解析几何,又称为坐标几何或卡氏几何,早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球面等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
解析几何,又称为坐标几何或卡氏几何,早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球面等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
次摆线,又称为余摆线、变幅摆线,是指当一个圆沿一条给定直线滚动时,固定在圆所在平面内一定点经过的轨迹。摆线是最常见的一种次摆线。
次摆线,又称为余摆线、变幅摆线,是指当一个圆沿一条给定直线滚动时,固定在圆所在平面内一定点经过的轨迹。摆线是最常见的一种次摆线。