时频分析 编辑
时频分布是一项让我们能够同时观察一个讯号的时域和频域资讯的工具,而时频分析就是在分析时频分布。传统上,我们常用傅立叶变换来观察一个讯号的频谱。然而,这样的方法不适合用来分析一个频率会随着时间而改变的讯号,由于傅立叶变换只分析了一维的讯号分布,而时频分析却能分析二维的讯号分布,因此在讯号处理中更常被运用。
1
相关
重新分布法是一种锐化讯号之时频分析的方法,借由将资料映射至较靠近原始讯号之真实支撑集的时频座标来实现。此方法曾被不同学者独立提出,并有重映射、时频重新分布以及修正滑动视窗法等别称。以时频谱或短时距傅立叶变换而言,重新分布法可借由估算局部的瞬时频率以及群延迟,使模糊的时频资料点重新定位并清晰化。当讯号可借由分析视窗进行时域和频域的分离时,这项时频座标的重新映射是相当精准的。
常数Q转换与短时距傅立叶转换一样为重要时频分析工具,其中特别适用于音乐信号的分析,这个转换产生的频谱最大的特色是在于频率轴为对数标度而不是线性标度,且窗口长度会随着频率而改变。
广义多项式韦格纳频谱图,是一种用于时频分析的方法,属于信号处理的范畴。一个好的时频分析讲求在频谱图上要有高的分辨率,并且不能有相交项,才能得到准确的瞬时频率,但这两点之间常须进行取舍。韦格纳分布虽然分辨率较高,但在许多情况下会有相交项,例如瞬时频率为高阶指数函数时或多组件时;在瞬时频率为高阶指数函数时多项式韦格纳分布除了能保有高分辨率之外还能消除相交项,但在多组件情况下的相交项仍然存在;加伯转换没有相交项,但分辨率较低,广义频谱图虽然强化了加伯转换的分辨率,但仍比韦格纳分布来得模糊。
改进型韦格纳分布,用于时频分析的一种方法,属于信号处理的范畴。它改进了韦格纳分布原有的相交项的问题。韦格纳分布是公元1932年由尤金·维格纳所提出用于古典力学,但是亦可用于时频分析。韦格纳分布与短时距傅立叶变换都可用于时频分析,虽然前者通常拥有较高的分辨率且有良好的数学特性,但当有两个以上的信号成分时,韦格纳分布就会出现相交项问题,这在应用上造成很大的困扰。因此在公元1995年,L. J. Stankovic和S. Stankovic提出了改进型韦格纳分布,以修正韦格纳分布中会出现的相交项问题。
短时距傅立叶变换是傅立叶变换的一种变形,也称作windowed Fourier transform或time-dependent Fourier transform,用于决定随时间变化的信号局部部分的正弦频率和相位。实际上,计算短时距傅立叶变换的过程是将长时间信号分成数个较短的等长信号,然后再分别计算每个较短段的傅立叶转换。通常拿来描绘频域与时域上的变化,为时频分析中其中一个重要的工具。
短时距傅立叶变换是傅立叶变换的一种变形,也称作windowed Fourier transform或time-dependent Fourier transform,用于决定随时间变化的信号局部部分的正弦频率和相位。实际上,计算短时距傅立叶变换的过程是将长时间信号分成数个较短的等长信号,然后再分别计算每个较短段的傅立叶转换。通常拿来描绘频域与时域上的变化,为时频分析中其中一个重要的工具。
模棱函数是一套用于讯号分析与讯号设计的数学方法,为菲力浦·伍德沃德在1953年所提出。其原初目的是用来分析雷达回波讯号受时间延迟和多普勒位移的影响,但在随后的发展中,也广泛的被使用在时频分析、讯号处理等领域上。
模棱函数是一套用于讯号分析与讯号设计的数学方法,为菲力浦·伍德沃德在1953年所提出。其原初目的是用来分析雷达回波讯号受时间延迟和多普勒位移的影响,但在随后的发展中,也广泛的被使用在时频分析、讯号处理等领域上。
时频分析的性质由其分布的核所决定,借由检视分布核的限制条件我们能很容易的了解时频分布的优缺点并让我们快速的选择符合需求的时频分布。因此我们将利用时频分布和核函数之间的关联研究相对应的时频分析性质,并以此作为设计时频分析的基准。
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。