柱状均匀多面体 编辑
几何学中,柱状均匀多面体是指属于柱状形的均匀多面体,其通常具有二面体群对称性。其包括了角柱和反角柱,同时柱状均匀多面体也都是拟柱体
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在几何学中,星形均匀多面体是指属于星形多面体的均匀多面体。不包括柱状均匀多面体,星形均匀多面体共有53种,部分文献会连同4种星形正多面体共57个立体一并列出。这些多面体皆具有点可递的特性。
在几何学中,四面半六面体是一种非凸七面体,属于星形多面体及均匀多面体,也可以归类在非凸均匀多面体;特别地,这个立体是所有非柱状均匀多面体中唯一拥有奇数面数的几何体。其外观看起来像部分面向内凹陷的正八面体,因此可以视为正八面体的刻面半多面体,故这个立体又称为半刻面八面体。其构成方式为将正八面体的面替换为3个几何中心的对角面并保留一半数量的原始三角形面构成,因此这个立体也可以归类为半多面体。由于其部分面通过几何中心,因此其对偶多面体的顶点会落在无穷远处,即无穷实射影平面上的点。
在几何学中,四面半六面体是一种非凸七面体,属于星形多面体及均匀多面体,也可以归类在非凸均匀多面体;特别地,这个立体是所有非柱状均匀多面体中唯一拥有奇数面数的几何体。其外观看起来像部分面向内凹陷的正八面体,因此可以视为正八面体的刻面半多面体,故这个立体又称为半刻面八面体。其构成方式为将正八面体的面替换为3个几何中心的对角面并保留一半数量的原始三角形面构成,因此这个立体也可以归类为半多面体。由于其部分面通过几何中心,因此其对偶多面体的顶点会落在无穷远处,即无穷实射影平面上的点。
在几何学中,四面半六面体是一种非凸七面体,属于星形多面体及均匀多面体,也可以归类在非凸均匀多面体;特别地,这个立体是所有非柱状均匀多面体中唯一拥有奇数面数的几何体。其外观看起来像部分面向内凹陷的正八面体,因此可以视为正八面体的刻面半多面体,故这个立体又称为半刻面八面体。其构成方式为将正八面体的面替换为3个几何中心的对角面并保留一半数量的原始三角形面构成,因此这个立体也可以归类为半多面体。由于其部分面通过几何中心,因此其对偶多面体的顶点会落在无穷远处,即无穷实射影平面上的点。
在几何学中,四面半六面体是一种非凸七面体,属于星形多面体及均匀多面体,也可以归类在非凸均匀多面体;特别地,这个立体是所有非柱状均匀多面体中唯一拥有奇数面数的几何体。其外观看起来像部分面向内凹陷的正八面体,因此可以视为正八面体的刻面半多面体,故这个立体又称为半刻面八面体。其构成方式为将正八面体的面替换为3个几何中心的对角面并保留一半数量的原始三角形面构成,因此这个立体也可以归类为半多面体。由于其部分面通过几何中心,因此其对偶多面体的顶点会落在无穷远处,即无穷实射影平面上的点。
在几何学中,四面半六面体是一种非凸七面体,属于星形多面体及均匀多面体,也可以归类在非凸均匀多面体;特别地,这个立体是所有非柱状均匀多面体中唯一拥有奇数面数的几何体。其外观看起来像部分面向内凹陷的正八面体,因此可以视为正八面体的刻面半多面体,故这个立体又称为半刻面八面体。其构成方式为将正八面体的面替换为3个几何中心的对角面并保留一半数量的原始三角形面构成,因此这个立体也可以归类为半多面体。由于其部分面通过几何中心,因此其对偶多面体的顶点会落在无穷远处,即无穷实射影平面上的点。
在几何学中,四面半六面体是一种非凸七面体,属于星形多面体及均匀多面体,也可以归类在非凸均匀多面体;特别地,这个立体是所有非柱状均匀多面体中唯一拥有奇数面数的几何体。其外观看起来像部分面向内凹陷的正八面体,因此可以视为正八面体的刻面半多面体,故这个立体又称为半刻面八面体。其构成方式为将正八面体的面替换为3个几何中心的对角面并保留一半数量的原始三角形面构成,因此这个立体也可以归类为半多面体。由于其部分面通过几何中心,因此其对偶多面体的顶点会落在无穷远处,即无穷实射影平面上的点。
在几何学中,四面半六面体是一种非凸七面体,属于星形多面体及均匀多面体,也可以归类在非凸均匀多面体;特别地,这个立体是所有非柱状均匀多面体中唯一拥有奇数面数的几何体。其外观看起来像部分面向内凹陷的正八面体,因此可以视为正八面体的刻面半多面体,故这个立体又称为半刻面八面体。其构成方式为将正八面体的面替换为3个几何中心的对角面并保留一半数量的原始三角形面构成,因此这个立体也可以归类为半多面体。由于其部分面通过几何中心,因此其对偶多面体的顶点会落在无穷远处,即无穷实射影平面上的点。