在任意时刻,波包是局限在空间的某有限范围区域内的波动,在其他区域的部分非常微小,可以被忽略。波包整体随着时间流易移动于空间。波包可以分解为一组不同频率、波数、相位、波幅的正弦波,也可以从同样一组正弦波构成;在任意时刻,这些正弦波只会在空间的某有限范围区域相长干涉,在其它区域会相消干涉。描绘波包轮廓的曲线称为包络线。依据不同的演化方程,在传播的时候,波包的包络线可能会保持不变,或者包络线会改变。
在量子力学里,WKB近似是一种半经典计算方法,可以用来解析薛定谔方程式。乔治·伽莫夫使用这方法,首先正确地解释了阿尔法衰变。WKB近似先将量子系统的波函数,重新打造为一个指数函数。然后,半经典展开。再假设波幅或相位的变化很慢。通过一番运算,就会得到波函数的近似解。
在量子力学里,WKB近似是一种半经典计算方法,可以用来解析薛定谔方程式。乔治·伽莫夫使用这方法,首先正确地解释了阿尔法衰变。WKB近似先将量子系统的波函数,重新打造为一个指数函数。然后,半经典展开。再假设波幅或相位的变化很慢。通过一番运算,就会得到波函数的近似解。
在量子力学里,WKB近似是一种半经典计算方法,可以用来解析薛定谔方程式。乔治·伽莫夫使用这方法,首先正确地解释了阿尔法衰变。WKB近似先将量子系统的波函数,重新打造为一个指数函数。然后,半经典展开。再假设波幅或相位的变化很慢。通过一番运算,就会得到波函数的近似解。
在量子力学里,WKB近似是一种半经典计算方法,可以用来解析薛定谔方程式。乔治·伽莫夫使用这方法,首先正确地解释了阿尔法衰变。WKB近似先将量子系统的波函数,重新打造为一个指数函数。然后,半经典展开。再假设波幅或相位的变化很慢。通过一番运算,就会得到波函数的近似解。
在量子力学里,WKB近似是一种半经典计算方法,可以用来解析薛定谔方程式。乔治·伽莫夫使用这方法,首先正确地解释了阿尔法衰变。WKB近似先将量子系统的波函数,重新打造为一个指数函数。然后,半经典展开。再假设波幅或相位的变化很慢。通过一番运算,就会得到波函数的近似解。