海森堡测不准原理 编辑
量子力学里,不确定性原理表明,粒子的位置向量动量不可同时被确定,位置的不确定性越小,则动量的不确定性越大,反之亦然。对于不同的案例,不确定性的内涵也不一样,它可以是观察者对于某种数量的信息的缺乏程度,也可以是对于某种数量的测量误差大小,或者是一个系综的类似制备的系统所具有的统计学扩散数值。
6
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。
在量子力学里,玻恩定则是一个基础公设。,是因原本提出这定则的物理学者马克斯·玻恩而命名。它给定对量子系统做测量得到某种结果的概率,它与海森堡测不准原理将概率的概念引入量子力学,因此使得量子力学展现出其独特的决定论。物理学者做实验尚未发现任何违背玻恩定则的量子行为。
在量子力学里,玻恩定则是一个基础公设。,是因原本提出这定则的物理学者马克斯·玻恩而命名。它给定对量子系统做测量得到某种结果的概率,它与海森堡测不准原理将概率的概念引入量子力学,因此使得量子力学展现出其独特的决定论。物理学者做实验尚未发现任何违背玻恩定则的量子行为。
在量子力学里,玻恩定则是一个基础公设。,是因原本提出这定则的物理学者马克斯·玻恩而命名。它给定对量子系统做测量得到某种结果的概率,它与海森堡测不准原理将概率的概念引入量子力学,因此使得量子力学展现出其独特的决定论。物理学者做实验尚未发现任何违背玻恩定则的量子行为。
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。