马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
Hautus引理是在控制理论以及状态空间下分析线性时不变系统理论时,相当好用的工具,得名自Malo Hautus,最早出现在1968年的《Classical Control Theory》及1973年的《Hyperstability of Control Systems》中 ,现今在许多的控制教科书上可以看到此引理。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。