电子简并压力 编辑
电子简并压强是由泡利不相容原理产生的,说明两个费米子不能同时占有相同的量子态,这种力量也是物质可以被压缩的极限。在恒星物理中,这是一个很重要的物理度量,因为它造就白矮星的存在。
2
相关
Ia超新星是一种发生在双星系统中的超新星,其中一颗恒星是白矮星,而另一颗恒星则大到巨星小到白矮星皆有可能。白矮星是已完成其正常生命周期核融合反应的恒星残骸。但是,一般最常见的碳-氧白矮星,如果它们的温度上升得足够高,仍有进行核融合反应,进一步释放大量能量的能力。物理上,低自转速率的碳-氧白矮星的质量会低于1.44太阳质量。有点令人费解的是,尽管与电子简并压力无法阻挡灾难性坍缩的钱德拉塞卡质量有所不同,这个限制通常被称为钱德拉塞卡极限。如果一颗白矮星可以从其联星系统的伴星逐渐吸积质量,一般假设当其接近此一质量极限时,核心将达到碳燃烧过程的点火温度。如果白矮星与另一颗恒星合并,它将在瞬间就超越了质量限制并开始坍缩,也会再次提升温度超越核融合的燃点。在启动核融合之后几秒钟,白矮星绝大部分的质量会经历热失控反应,释放出极为巨大的能量,在超新星爆炸中解除恒星的束缚。
Ia超新星是一种发生在双星系统中的超新星,其中一颗恒星是白矮星,而另一颗恒星则大到巨星小到白矮星皆有可能。白矮星是已完成其正常生命周期核融合反应的恒星残骸。但是,一般最常见的碳-氧白矮星,如果它们的温度上升得足够高,仍有进行核融合反应,进一步释放大量能量的能力。物理上,低自转速率的碳-氧白矮星的质量会低于1.44太阳质量。有点令人费解的是,尽管与电子简并压力无法阻挡灾难性坍缩的钱德拉塞卡质量有所不同,这个限制通常被称为钱德拉塞卡极限。如果一颗白矮星可以从其联星系统的伴星逐渐吸积质量,一般假设当其接近此一质量极限时,核心将达到碳燃烧过程的点火温度。如果白矮星与另一颗恒星合并,它将在瞬间就超越了质量限制并开始坍缩,也会再次提升温度超越核融合的燃点。在启动核融合之后几秒钟,白矮星绝大部分的质量会经历热失控反应,释放出极为巨大的能量,在超新星爆炸中解除恒星的束缚。
钱德拉塞卡极限,以印度裔美籍天文物理学家苏布拉马尼扬·钱德拉塞卡命名,是无自转恒星以电子简并压力阻挡重力塌缩所能承受的最大质量,这个值大约是1.44倍太阳质量 ,计算的结果会依据原子核的结构和温度而有些差异。钱德拉塞卡 给出
钱德拉塞卡极限,以印度裔美籍天文物理学家苏布拉马尼扬·钱德拉塞卡命名,是无自转恒星以电子简并压力阻挡重力塌缩所能承受的最大质量,这个值大约是1.44倍太阳质量 ,计算的结果会依据原子核的结构和温度而有些差异。钱德拉塞卡 给出
钱德拉塞卡极限,以印度裔美籍天文物理学家苏布拉马尼扬·钱德拉塞卡命名,是无自转恒星以电子简并压力阻挡重力塌缩所能承受的最大质量,这个值大约是1.44倍太阳质量 ,计算的结果会依据原子核的结构和温度而有些差异。钱德拉塞卡 给出
钱德拉塞卡极限,以印度裔美籍天文物理学家苏布拉马尼扬·钱德拉塞卡命名,是无自转恒星以电子简并压力阻挡重力塌缩所能承受的最大质量,这个值大约是1.44倍太阳质量 ,计算的结果会依据原子核的结构和温度而有些差异。钱德拉塞卡 给出
钱德拉塞卡极限,以印度裔美籍天文物理学家苏布拉马尼扬·钱德拉塞卡命名,是无自转恒星以电子简并压力阻挡重力塌缩所能承受的最大质量,这个值大约是1.44倍太阳质量 ,计算的结果会依据原子核的结构和温度而有些差异。钱德拉塞卡 给出
Ia超新星是一种发生在双星系统中的超新星,其中一颗恒星是白矮星,而另一颗恒星则大到巨星小到白矮星皆有可能。白矮星是已完成其正常生命周期核融合反应的恒星残骸。但是,一般最常见的碳-氧白矮星,如果它们的温度上升得足够高,仍有进行核融合反应,进一步释放大量能量的能力。物理上,低自转速率的碳-氧白矮星的质量会低于1.44太阳质量。有点令人费解的是,尽管与电子简并压力无法阻挡灾难性坍缩的钱德拉塞卡质量有所不同,这个限制通常被称为钱德拉塞卡极限。如果一颗白矮星可以从其联星系统的伴星逐渐吸积质量,一般假设当其接近此一质量极限时,核心将达到碳燃烧过程的点火温度。如果白矮星与另一颗恒星合并,它将在瞬间就超越了质量限制并开始坍缩,也会再次提升温度超越核融合的燃点。在启动核融合之后几秒钟,白矮星绝大部分的质量会经历热失控反应,释放出极为巨大的能量,在超新星爆炸中解除恒星的束缚。