电极化 编辑
经典电磁学里,当给电介质施加一个电场时,由于电介质内部正负电荷的相对位移,会产生电偶极子,这现象称为电极化。施加的电场可能是外电场,也可能是嵌入电介质内部的自由电荷所产生的电场。因为电极化而产生的电偶极子称为“感应电偶极子”,其电偶极矩称为“感应电偶极矩”。
1
相关
介电质是一种可被电极化的绝缘体。假设将介电质置入外电场,则束缚于其原子或分子的束缚电荷不会流过介电质,只会从原本位置移动微小距离,即正电荷朝着电场方向稍微迁移,而负电荷朝着反方向稍微迁移。这会造成介电质电极化,从而产生反抗电场,减弱介电质内部的电场。假若介电质是由弱键结的分子构成,则这些分子不但会被电极化,也会改变取向,试着将自己的对称轴与电场对齐。
介电质是一种可被电极化的绝缘体。假设将介电质置入外电场,则束缚于其原子或分子的束缚电荷不会流过介电质,只会从原本位置移动微小距离,即正电荷朝着电场方向稍微迁移,而负电荷朝着反方向稍微迁移。这会造成介电质电极化,从而产生反抗电场,减弱介电质内部的电场。假若介电质是由弱键结的分子构成,则这些分子不但会被电极化,也会改变取向,试着将自己的对称轴与电场对齐。
铁电性是某些材料存在自发的电极化,并在外加电场的作用下可以被反转的特性。该术语被用于类比铁磁性,其中,材料表现出永久磁矩。当铁电性于1920年被Valasek在酒石酸钾钠中发现时,铁磁性就已经被知道。其英文术语的前缀ferro,意思是铁,只是被用来描述属性,事实上大多数铁电材料不含有铁。
铁电性是某些材料存在自发的电极化,并在外加电场的作用下可以被反转的特性。该术语被用于类比铁磁性,其中,材料表现出永久磁矩。当铁电性于1920年被Valasek在酒石酸钾钠中发现时,铁磁性就已经被知道。其英文术语的前缀ferro,意思是铁,只是被用来描述属性,事实上大多数铁电材料不含有铁。
在电磁学里,介电质响应外电场的施加而电极化的衡量,称为电容率。在非真空中由于介电质被电极化,在物质内部的总电场会减小。电容率关系到介电质传输电场的能力。电容率衡量电场怎样影响介电质,怎样被介电质影响。电容率又称为“绝对电容率”。
在电磁学里,为了要应用宏观马克士威方程组,必须分别找到




D



{\displaystyle \mathbf {D} }

场与




E



{\displaystyle \mathbf {E} }

场之间,和




H



{\displaystyle \mathbf {H} }

场与




B



{\displaystyle \mathbf {B} }

场之间的关系。这些称为本构关系的物理性质,设定了束缚电荷和束缚电流对于外场的响应。它们实际地对应于,一个物质响应外场作用而产生的电极化或磁化强度。
在电磁学里,为了要应用宏观马克士威方程组,必须分别找到




D



{\displaystyle \mathbf {D} }

场与




E



{\displaystyle \mathbf {E} }

场之间,和




H



{\displaystyle \mathbf {H} }

场与




B



{\displaystyle \mathbf {B} }

场之间的关系。这些称为本构关系的物理性质,设定了束缚电荷和束缚电流对于外场的响应。它们实际地对应于,一个物质响应外场作用而产生的电极化或磁化强度。
介电质是一种可被电极化的绝缘体。假设将介电质置入外电场,则束缚于其原子或分子的束缚电荷不会流过介电质,只会从原本位置移动微小距离,即正电荷朝着电场方向稍微迁移,而负电荷朝着反方向稍微迁移。这会造成介电质电极化,从而产生反抗电场,减弱介电质内部的电场。假若介电质是由弱键结的分子构成,则这些分子不但会被电极化,也会改变取向,试着将自己的对称轴与电场对齐。
介电质是一种可被电极化的绝缘体。假设将介电质置入外电场,则束缚于其原子或分子的束缚电荷不会流过介电质,只会从原本位置移动微小距离,即正电荷朝着电场方向稍微迁移,而负电荷朝着反方向稍微迁移。这会造成介电质电极化,从而产生反抗电场,减弱介电质内部的电场。假若介电质是由弱键结的分子构成,则这些分子不但会被电极化,也会改变取向,试着将自己的对称轴与电场对齐。
在电磁学里,介电质响应外电场的施加而电极化的衡量,称为电容率。在非真空中由于介电质被电极化,在物质内部的总电场会减小。电容率关系到介电质传输电场的能力。电容率衡量电场怎样影响介电质,怎样被介电质影响。电容率又称为“绝对电容率”。