直觉类型论 编辑
直觉类型论,也可简称类型论,此外也有构造类型论或马汀-洛夫类型论称呼。是基于数学构造主义函数式编程语言逻辑集合论
8
相关
在计算机科学和逻辑中,依赖类型是指依赖于值的类型,其理论同时包含了数学基础中的类型论和计算机编程中用以减少程序错误的类型系统两方面。在 Per Martin-Löf 的直觉类型论中,依赖类型可对应于谓词逻辑中的全称量词和存在量词;在依赖类型函数式编程语言如 自动列车停止装置、Agda、Dependent ML、Epigram、F* 和 Idris 中,依赖类型系统通过极其丰富的类型表达能力使得程序规范得以借助类型的形式被检查,从而有效减少程序错误。
在数理逻辑与计算机科学中,同伦类型论是一套旨在于同伦论的大框架下构建直觉类型论语义的理论,尤指Quillen模型范畴和弱分解系统。反而言之,内涵类型论则为同伦理论提供了一套逻辑语言。类型论在绝大多数计算机证明辅助系统中被用作集合论的替代理论,因为集合论的语言难以转化成计算机证明辅助的形式语言。
在数理逻辑与计算机科学中,同伦类型论是一套旨在于同伦论的大框架下构建直觉类型论语义的理论,尤指Quillen模型范畴和弱分解系统。反而言之,内涵类型论则为同伦理论提供了一套逻辑语言。类型论在绝大多数计算机证明辅助系统中被用作集合论的替代理论,因为集合论的语言难以转化成计算机证明辅助的形式语言。
在计算机科学和逻辑中,依赖类型是指依赖于值的类型,其理论同时包含了数学基础中的类型论和计算机编程中用以减少程序错误的类型系统两方面。在 Per Martin-Löf 的直觉类型论中,依赖类型可对应于谓词逻辑中的全称量词和存在量词;在依赖类型函数式编程语言如 自动列车停止装置、Agda、Dependent ML、Epigram、F* 和 Idris 中,依赖类型系统通过极其丰富的类型表达能力使得程序规范得以借助类型的形式被检查,从而有效减少程序错误。
佩尔·埃里克·罗格·马丁-洛夫,瑞典逻辑学家、统计学家和哲学家。他以其在概率论基础方面的工作而闻名。自20世纪70年代以后,他的工作主要集中在逻辑学方面。在哲学逻辑方面,他的研究专注于蕴涵及判断学说,并在一定程度上受到了弗朗兹·布伦塔诺、弗雷格和胡塞尔先前工作的影响;在数理逻辑方面,他致力于创设直觉类型论作为数学的数学结构主义数学基础。马丁-洛夫在类型论方面的工作深深地影响了计算机科学、尤其是后世编程语言理论的发展。