是“透过受激发射产生的光放大器”的缩写,指透过刺激原子导致电子分子电子跃迁释放电磁辐射能量而产生的具有相干性的增强光子束。其特点包括发散度极小、亮度很高、单色性好、相干性好等。产生激光需要“激发来源”、“增益介质”、“共振结构”这三个要素。
是“透过受激发射产生的光放大器”的缩写,指透过刺激原子导致电子分子电子跃迁释放电磁辐射能量而产生的具有相干性的增强光子束。其特点包括发散度极小、亮度很高、单色性好、相干性好等。产生激光需要“激发来源”、“增益介质”、“共振结构”这三个要素。
是“透过受激发射产生的光放大器”的缩写,指透过刺激原子导致电子分子电子跃迁释放电磁辐射能量而产生的具有相干性的增强光子束。其特点包括发散度极小、亮度很高、单色性好、相干性好等。产生激光需要“激发来源”、“增益介质”、“共振结构”这三个要素。
是“透过受激发射产生的光放大器”的缩写,指透过刺激原子导致电子分子电子跃迁释放电磁辐射能量而产生的具有相干性的增强光子束。其特点包括发散度极小、亮度很高、单色性好、相干性好等。产生激光需要“激发来源”、“增益介质”、“共振结构”这三个要素。
罗伊·杰·格劳伯,美国物理学家,哈佛大学物理学教授和亚利桑那大学光学科学兼职教授,出生于纽约市。他因“对光学相干性的量子理论的贡献”而获得一半的2005年诺贝尔物理学奖,另一半由美国科罗拉多大学的约翰·霍尔和德国慕尼黑路德维希-马克西米利安大学特奥多尔·亨施分享。他亦是搞笑诺贝尔奖颁奖典礼的扫帚保管员,总是负责清扫台上的纸飞机。
范西特-泽尼克定理是相干性理论中的一个公式,它研究的是单色扩展光源光场的空间相干性。它表明了在一定条件下,一个远距离的非相干源共有相干方程的傅里叶变换等于它的复合能见度。这说明了一个不相干源的波前会在远距离相干地出现。如果我们在一个源前测量波前,我们的测量会被周围的源所主导。如果我们在远离该源的情况下做同样的测试,我们测量则不会被某一个源所主导,两个源几乎等量地对波前产生影响。
在物理学中,布拉格定律给出晶格的相干性及不相干散射角度。当X射线入射于原子时,跟任何电磁波一样,它们会使电子移动。电荷的运动把波动以同样的频率再发射出去;这种现象叫瑞利散射。散射出来的波可以再相互散射,但这种进级散射在这里是可以忽略的。当中子波与原子核或不成对电子的相干性自旋进行相互作用时,会发生一种与上述电磁波相近的过程。这些被重新发射出来的波来相互干涉,可能是相长的,也可能是相消的,在探测器或底片上产生绕射图样。而所产生的波干涉图样就是绕射分析的基本部分。这种解析叫布拉格绕射。
迈克耳孙测星干涉仪是最早被提出并建造的天文干涉仪之一,它的概念首先由美国物理学家阿尔伯特·迈克耳孙和法国物理学家阿曼德·斐索在1890年提出,而迈克耳孙和美国天文学家弗朗西斯·皮斯于1920年在威尔逊山天文台使用它首次测量了恒星的角直径。
在此之前,恒星尺寸的测量是天文学上的一大难题,这是由于传统光学天文望远镜的角分辨率受到物镜口径的限制,即使是人类能制造的最大的天文望远镜,其角分辨率也大约只有10弧度秒的量级,无法达到测量普通恒星所需的分辨率。迈克耳孙测星干涉仪利用干涉条纹的可见度随扩展光源的线度增加而下降的原理,将恒星看作一个平面相干性光源,从而可以很巧妙地测量恒星的角直径。
自由电子激光器,所产生激光束其光学性质与传统激光器一样,具有高度相干性、高能量的特点,不同之处在于其产生原理。一般激光产生方法是用特定物质激发至激发态以作为激光介质,其激光产生是把原本处于激发态的原子或分子激发以产生激光;有别于一般激光,FEL的光来自同步辐射光源,其原理是利用聚频磁铁 或增频磁铁 的磁场把高速前进的电子束多次改变方向,从而把电子的动能转为光子。在这些光子与电子束的相互作用下,光得以放大,而电子束也继而以同步方式发放光束,就此得出了激光。由于电子束在磁场中是自由移动的,故命名为“自由电子激光器”。