Ia超新星是一种发生在双星系统中的超新星,其中一颗恒星是白矮星,而另一颗恒星则大到巨星小到白矮星皆有可能。白矮星是已完成其正常生命周期核融合反应的恒星残骸。但是,一般最常见的碳-氧白矮星,如果它们的温度上升得足够高,仍有进行核融合反应,进一步释放大量能量的能力。物理上,低自转速率的碳-氧白矮星的质量会低于1.44太阳质量。有点令人费解的是,尽管与电子简并压力无法阻挡灾难性坍缩的钱德拉塞卡质量有所不同,这个限制通常被称为钱德拉塞卡极限。如果一颗白矮星可以从其联星系统的伴星逐渐吸积质量,一般假设当其接近此一质量极限时,核心将达到碳燃烧过程的点火温度。如果白矮星与另一颗恒星合并,它将在瞬间就超越了质量限制并开始坍缩,也会再次提升温度超越核融合的燃点。在启动核融合之后几秒钟,白矮星绝大部分的质量会经历热失控反应,释放出极为巨大的能量,在超新星爆炸中解除恒星的束缚。
Ia超新星是一种发生在双星系统中的超新星,其中一颗恒星是白矮星,而另一颗恒星则大到巨星小到白矮星皆有可能。白矮星是已完成其正常生命周期核融合反应的恒星残骸。但是,一般最常见的碳-氧白矮星,如果它们的温度上升得足够高,仍有进行核融合反应,进一步释放大量能量的能力。物理上,低自转速率的碳-氧白矮星的质量会低于1.44太阳质量。有点令人费解的是,尽管与电子简并压力无法阻挡灾难性坍缩的钱德拉塞卡质量有所不同,这个限制通常被称为钱德拉塞卡极限。如果一颗白矮星可以从其联星系统的伴星逐渐吸积质量,一般假设当其接近此一质量极限时,核心将达到碳燃烧过程的点火温度。如果白矮星与另一颗恒星合并,它将在瞬间就超越了质量限制并开始坍缩,也会再次提升温度超越核融合的燃点。在启动核融合之后几秒钟,白矮星绝大部分的质量会经历热失控反应,释放出极为巨大的能量,在超新星爆炸中解除恒星的束缚。
硅燃烧过程在天体物理的核融合反应序列中是非常短暂的过程,它发生在质量至少是8-11太阳质量的恒星。对恒星而言,硅燃烧是大质量恒星长期以来以核融合供应能量的最后阶段,是燃料耗尽的生命终点,然后她们就将离开赫罗图上的主序带。它之前的几个阶段是质子-质子链反应、3氦过程、碳燃烧过程、氖燃烧过程、和氧燃烧过程燃烧过程。
Ia超新星是一种发生在双星系统中的超新星,其中一颗恒星是白矮星,而另一颗恒星则大到巨星小到白矮星皆有可能。白矮星是已完成其正常生命周期核融合反应的恒星残骸。但是,一般最常见的碳-氧白矮星,如果它们的温度上升得足够高,仍有进行核融合反应,进一步释放大量能量的能力。物理上,低自转速率的碳-氧白矮星的质量会低于1.44太阳质量。有点令人费解的是,尽管与电子简并压力无法阻挡灾难性坍缩的钱德拉塞卡质量有所不同,这个限制通常被称为钱德拉塞卡极限。如果一颗白矮星可以从其联星系统的伴星逐渐吸积质量,一般假设当其接近此一质量极限时,核心将达到碳燃烧过程的点火温度。如果白矮星与另一颗恒星合并,它将在瞬间就超越了质量限制并开始坍缩,也会再次提升温度超越核融合的燃点。在启动核融合之后几秒钟,白矮星绝大部分的质量会经历热失控反应,释放出极为巨大的能量,在超新星爆炸中解除恒星的束缚。