稀疏矩阵 编辑
稀疏矩阵,在数值分析中,是其元素大部分为零的矩阵。反之,如果大部分元素都非零,则这个矩阵是稠密的。在科学与工程领域中求解线性模型时经常出现大型的稀疏矩阵。
1
相关
快速傅里叶变换,是快速计算序列的离散傅里叶变换或其逆变换的方法。傅里叶分析将信号从原始域转换到频域的表示或者逆过来转换。FFT会通过把离散傅里叶变换矩阵矩阵分解为稀疏矩阵因子之积来快速计算此类变换。 因此,它能够将计算DFT的计算复杂性理论从只用DFT定义计算需要的



O



{\displaystyle O}

,降低到



O



{\displaystyle O}

,其中



n


{\displaystyle n}

为数据大小。
快速傅里叶变换,是快速计算序列的离散傅里叶变换或其逆变换的方法。傅里叶分析将信号从原始域转换到频域的表示或者逆过来转换。FFT会通过把离散傅里叶变换矩阵矩阵分解为稀疏矩阵因子之积来快速计算此类变换。 因此,它能够将计算DFT的计算复杂性理论从只用DFT定义计算需要的



O



{\displaystyle O}

,降低到



O



{\displaystyle O}

,其中



n


{\displaystyle n}

为数据大小。
稀松字典学习是一种表征学习方法,其目的在于找出一组基本元素让输入讯号映射到这组基本元素时具有稀松表达式。我们称这些基本元素为“原子”,这些原子的组合则为“字典”。字典里的“原子”并不需要满足正交基这一特性,且往往它们会是过完备的生成集合。过多的原子除了可以让我们在叙述一个讯号的时候可以由很多种表达式,同时也提升了整个表达式的稀疏矩阵性,让我们可以以较简单的表达式来诠释讯号。
快速傅里叶变换,是快速计算序列的离散傅里叶变换或其逆变换的方法。傅里叶分析将信号从原始域转换到频域的表示或者逆过来转换。FFT会通过把离散傅里叶变换矩阵矩阵分解为稀疏矩阵因子之积来快速计算此类变换。 因此,它能够将计算DFT的计算复杂性理论从只用DFT定义计算需要的



O



{\displaystyle O}

,降低到



O



{\displaystyle O}

,其中



n


{\displaystyle n}

为数据大小。
快速傅里叶变换,是快速计算序列的离散傅里叶变换或其逆变换的方法。傅里叶分析将信号从原始域转换到频域的表示或者逆过来转换。FFT会通过把离散傅里叶变换矩阵矩阵分解为稀疏矩阵因子之积来快速计算此类变换。 因此,它能够将计算DFT的计算复杂性理论从只用DFT定义计算需要的



O



{\displaystyle O}

,降低到



O



{\displaystyle O}

,其中



n


{\displaystyle n}

为数据大小。
快速傅里叶变换,是快速计算序列的离散傅里叶变换或其逆变换的方法。傅里叶分析将信号从原始域转换到频域的表示或者逆过来转换。FFT会通过把离散傅里叶变换矩阵矩阵分解为稀疏矩阵因子之积来快速计算此类变换。 因此,它能够将计算DFT的计算复杂性理论从只用DFT定义计算需要的



O



{\displaystyle O}

,降低到



O



{\displaystyle O}

,其中



n


{\displaystyle n}

为数据大小。
快速傅里叶变换,是快速计算序列的离散傅里叶变换或其逆变换的方法。傅里叶分析将信号从原始域转换到频域的表示或者逆过来转换。FFT会通过把离散傅里叶变换矩阵矩阵分解为稀疏矩阵因子之积来快速计算此类变换。 因此,它能够将计算DFT的计算复杂性理论从只用DFT定义计算需要的



O



{\displaystyle O}

,降低到



O



{\displaystyle O}

,其中



n


{\displaystyle n}

为数据大小。
快速傅里叶变换,是快速计算序列的离散傅里叶变换或其逆变换的方法。傅里叶分析将信号从原始域转换到频域的表示或者逆过来转换。FFT会通过把离散傅里叶变换矩阵矩阵分解为稀疏矩阵因子之积来快速计算此类变换。 因此,它能够将计算DFT的计算复杂性理论从只用DFT定义计算需要的



O



{\displaystyle O}

,降低到



O



{\displaystyle O}

,其中



n


{\displaystyle n}

为数据大小。
十字链表是计算机科学中的一种高级数据结构,在Linux内核中应用广泛。具体说,一个二维十字链表是链表的元素同时链接左右水平邻结点与上下垂直邻结点。这一方法可以推广到更高维以存储稀疏矩阵、图等数据集合。
十字链表是计算机科学中的一种高级数据结构,在Linux内核中应用广泛。具体说,一个二维十字链表是链表的元素同时链接左右水平邻结点与上下垂直邻结点。这一方法可以推广到更高维以存储稀疏矩阵、图等数据集合。