紫外线天文学 编辑
紫外线天文学是研究天体紫外线辐射的天文学分支学科;观测电磁波波长大约在100到3200之间
。波长更短和能量更高的电磁波则属X射线天文学伽马射线天文学的范围。因为这个范围波长的辐射无法穿透地球大气层,必须以太空望远镜观测。
1
相关
高能天文学是研究天体所释放的高能量电磁波的一个天文学分支。高能天文学包含伽马射线天文学、X射线天文学和极紫外线天文学;并且也研究微中子和宇宙射线。而这些物理现象的研究也常被称为高能天文物理学。
莱曼断裂星系是利用星系在莱曼极限两侧波段的图像不同而发现的高红移的恒星形成星系。过去这种技术主要利用紫外线和可见光波段寻找红移值z=3-4的星系,但是随着紫外线天文学和红外线天文学的发展,我们已经可以在紫外和近红外波段寻找更低或更高红移的星系。
可见光天文学是通过光学天文望远镜接收到的宇宙天体发射的可见光来研究天体的物理、化学性质的一门学科。可见光天文学是光学天文学的一部分,光学天文学中也有利用电磁波谱中不可见光的天文学,例如射电天文学、红外天文学、紫外线天文学、X射线天文学和伽马射线天文学。可见光的波长是在380至750纳米之间。
类星体 是极度光度的活跃星系核。大多数星系的核心都有一个超大质量黑洞,它的质量从百万至数十亿太阳质量不等。在类星体和其它形式的活跃星系核,黑洞被气态的吸积盘环绕着。当吸积盘中的气体朝向黑洞墬落,能量就会以电磁辐射的形式释放出来。这些电磁辐射被观测到,发现电磁辐射可以跨越电波天文学、红外线天文学、可见光、紫外线天文学、X射线、和γ射线等电磁频谱的波长。类星体电磁辐射的功率非常巨大:最强大的类星体的光度超过10 瓦特,是普通星系,例如银河系,的数千倍。"类星体"这个名词源自于准恒星状电波源的缩写,因为在1950年代发现这种天体时,被认定为未知物理源的电波发射源,当在可见光的照相图中筛检出来时,它们类似可见光的星状微弱光点。类星体的高解析影像,特别是哈伯太空望远镜,已经证明类星体是发生在星系的中心,一些类星体的宿主星系是强烈的交互作用星系或星系合并中的星系。与其它类型的活跃星系核,类星体的观测性质取决于许多因素,包括黑洞的质量、气体的吸积率、吸积盘相对于观测者的方向、存在或没有喷流、和被气体和在宿主星系内宇宙尘的消光 程度。类星体存在的距离测量非常广泛,类星体发现的调查证明类星体的活动在遥远的过去更为常见。类星体活跃的高峰时期在宇宙对应于红移大约2,也就是100亿年前。截至2017年,发现已知最遥远的类星体是ULAS J1342+0928,红移z=7.54;观测从这个类星体发出的光,观测到当时的宇宙年龄只有6.9亿岁。这个类星体中的超大质量黑洞是迄今为止发现的最遥远黑洞。估计它的质量是我们的太阳的8亿倍。
高能天文学是研究天体所释放的高能量电磁波的一个天文学分支。高能天文学包含伽马射线天文学、X射线天文学和极紫外线天文学;并且也研究微中子和宇宙射线。而这些物理现象的研究也常被称为高能天文物理学。
高能天文学是研究天体所释放的高能量电磁波的一个天文学分支。高能天文学包含伽马射线天文学、X射线天文学和极紫外线天文学;并且也研究微中子和宇宙射线。而这些物理现象的研究也常被称为高能天文物理学。
类星体 是极度光度的活跃星系核。大多数星系的核心都有一个超大质量黑洞,它的质量从百万至数十亿太阳质量不等。在类星体和其它形式的活跃星系核,黑洞被气态的吸积盘环绕着。当吸积盘中的气体朝向黑洞墬落,能量就会以电磁辐射的形式释放出来。这些电磁辐射被观测到,发现电磁辐射可以跨越电波天文学、红外线天文学、可见光、紫外线天文学、X射线、和γ射线等电磁频谱的波长。类星体电磁辐射的功率非常巨大:最强大的类星体的光度超过10 瓦特,是普通星系,例如银河系,的数千倍。"类星体"这个名词源自于准恒星状电波源的缩写,因为在1950年代发现这种天体时,被认定为未知物理源的电波发射源,当在可见光的照相图中筛检出来时,它们类似可见光的星状微弱光点。类星体的高解析影像,特别是哈伯太空望远镜,已经证明类星体是发生在星系的中心,一些类星体的宿主星系是强烈的交互作用星系或星系合并中的星系。与其它类型的活跃星系核,类星体的观测性质取决于许多因素,包括黑洞的质量、气体的吸积率、吸积盘相对于观测者的方向、存在或没有喷流、和被气体和在宿主星系内宇宙尘的消光 程度。类星体存在的距离测量非常广泛,类星体发现的调查证明类星体的活动在遥远的过去更为常见。类星体活跃的高峰时期在宇宙对应于红移大约2,也就是100亿年前。截至2017年,发现已知最遥远的类星体是ULAS J1342+0928,红移z=7.54;观测从这个类星体发出的光,观测到当时的宇宙年龄只有6.9亿岁。这个类星体中的超大质量黑洞是迄今为止发现的最遥远黑洞。估计它的质量是我们的太阳的8亿倍。
类星体 是极度光度的活跃星系核。大多数星系的核心都有一个超大质量黑洞,它的质量从百万至数十亿太阳质量不等。在类星体和其它形式的活跃星系核,黑洞被气态的吸积盘环绕着。当吸积盘中的气体朝向黑洞墬落,能量就会以电磁辐射的形式释放出来。这些电磁辐射被观测到,发现电磁辐射可以跨越电波天文学、红外线天文学、可见光、紫外线天文学、X射线、和γ射线等电磁频谱的波长。类星体电磁辐射的功率非常巨大:最强大的类星体的光度超过10 瓦特,是普通星系,例如银河系,的数千倍。"类星体"这个名词源自于准恒星状电波源的缩写,因为在1950年代发现这种天体时,被认定为未知物理源的电波发射源,当在可见光的照相图中筛检出来时,它们类似可见光的星状微弱光点。类星体的高解析影像,特别是哈伯太空望远镜,已经证明类星体是发生在星系的中心,一些类星体的宿主星系是强烈的交互作用星系或星系合并中的星系。与其它类型的活跃星系核,类星体的观测性质取决于许多因素,包括黑洞的质量、气体的吸积率、吸积盘相对于观测者的方向、存在或没有喷流、和被气体和在宿主星系内宇宙尘的消光 程度。类星体存在的距离测量非常广泛,类星体发现的调查证明类星体的活动在遥远的过去更为常见。类星体活跃的高峰时期在宇宙对应于红移大约2,也就是100亿年前。截至2017年,发现已知最遥远的类星体是ULAS J1342+0928,红移z=7.54;观测从这个类星体发出的光,观测到当时的宇宙年龄只有6.9亿岁。这个类星体中的超大质量黑洞是迄今为止发现的最遥远黑洞。估计它的质量是我们的太阳的8亿倍。
火星天文学这篇文章是介绍从火星这颗行星察看天空所看见的资讯和影像。在许多情况下,这些现象与地球所见的相同或是类似,但是有时会相当的不同,好比观看地球是晨星或昏星。例如,因为火星的大气层没有臭氧层,这使得在火星表面有可能从事紫外线天文学
极紫外探测器 是于1992年6月7日发射,使用于紫外线天文学的太空望远镜。EUVE是第一架有能力侦测波长范围在7至76奈米短波紫外线辐射的仪器。这颗卫星在2001年1月31日 停止观测之前,对全天空所做的巡天观测总共编录了801个天体。它于2002年1月30日重返大气层。