计算复杂性理论 编辑
计算复杂性理论是理论计算机科学和数学的一个分支,它致力于将可计算问题根据它们本身的复杂性分类,以及将这些类别联系起来。一个可计算问题被认为是一个原则上可以用计算机解决的问题,亦即这个问题可以用一系列机械的数学步骤解决,例如算法
12
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
计算机科学是系统性研究信息与计算科学的理论基础以及它们在电子计算机系统中如何实现与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探讨计算问题的性质,比如计算复杂性理论;还有一些领域专注于怎样实现计算,比如程式语言理论是研究描述计算的方法,而程式设计是应用特定的程式语言解决特定的计算问题,人机交互则是专注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。
计算机科学是系统性研究信息与计算科学的理论基础以及它们在电子计算机系统中如何实现与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探讨计算问题的性质,比如计算复杂性理论;还有一些领域专注于怎样实现计算,比如程式语言理论是研究描述计算的方法,而程式设计是应用特定的程式语言解决特定的计算问题,人机交互则是专注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。
安德雷·尼古拉耶维奇·柯尔莫哥洛夫,俄国数学家,主要研究概率论、算法信息论、拓扑学、直觉主义逻辑、紊流、经典力学和计算复杂性理论,最为人所道的是对概率论公理化所作出的贡献。他曾说:“概率论作为数学学科,可以而且应该从公理开始建设,和几何、代数的路一样”。
不可判定问题是可计算性理论和计算复杂性理论中定义的一类决定性问题,此类问题无法总是用单一算法得出正确的是/否的答案。停机问题是这类问题的一个代表:对于停机问题,没有算法能够正确判定任意程序是否会终止运行。
大O符号,又称为渐进符号,是用于描述函数渐近分析的数学符号。更确切地说,它是用另一个函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在算法分析算法计算复杂性理论的方面非常有用。
安德雷·尼古拉耶维奇·柯尔莫哥洛夫,俄国数学家,主要研究概率论、算法信息论、拓扑学、直觉主义逻辑、紊流、经典力学和计算复杂性理论,最为人所道的是对概率论公理化所作出的贡献。他曾说:“概率论作为数学学科,可以而且应该从公理开始建设,和几何、代数的路一样”。
理查德·斯特恩斯 是一名美国杰出的计算机科学家。他是纽约州立大学奥本尼分校计算机科学的一名教授。1993年,他与尤里斯·哈特马尼斯一起因在计算复杂性理论取得的杰出贡献而获得图灵奖。
机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。
在数学中,整数分解又称质因数分解,是将一个正整数写成几个因数的乘积。例如,给出45这个数,它可以分解成




{\displaystyle }






3

2


×
5


{\displaystyle 3^{2}\times 5}

。根据算术基本定理,这样的分解结果应该是独一无二的。这个问题在代数学、密码学、计算复杂性理论和量子计算机等领域中有重要意义。
介绍NP困难之前要说到P问题和NP问题,P问题是在多项式时间内可以被解决的问题,而NP问题是在多项式时间内可以被验证其正确性的问题。
NP困难问题是计算复杂性理论中最重要的复杂性类之一。如果所有NP问题都可以多项式时间归约到某个问题,则称该问题为NP困难。