达朗贝尔 编辑
让·勒朗·达朗贝尔,法国物理学家、数学家和天文学家。他一生在很多领域进行研究,在数学、力学、天文学、哲学音乐和社会活动方面都有很多建树。著有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书,或科学、艺术和工艺详解词典》的序言。很多的研究成果记载于《宇宙体系的几个要点研究》中。
4
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
比值审敛法是判别级数敛散性的一种方法,又称为达朗贝尔判别法。
复分析中的柯西-黎曼微分方程,又称柯西-黎曼条件。是提供了可微函数在开集中为全纯的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。
达朗贝尔原理是因其发现者法国物理学家与数学家达朗贝尔而命名。达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零:
达朗贝尔原理是因其发现者法国物理学家与数学家达朗贝尔而命名。达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零:
比值审敛法是判别级数敛散性的一种方法,又称为达朗贝尔判别法。
达朗贝尔原理是因其发现者法国物理学家与数学家达朗贝尔而命名。达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零:
比值审敛法是判别级数敛散性的一种方法,又称为达朗贝尔判别法。
复分析中的柯西-黎曼微分方程,又称柯西-黎曼条件。是提供了可微函数在开集中为全纯的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。
复分析中的柯西-黎曼微分方程,又称柯西-黎曼条件。是提供了可微函数在开集中为全纯的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。