镶嵌 (几何) 编辑
几何学中,镶嵌又称密铺是指能用一种或多种几何图形覆盖整个平面或填充整个空间,且每个几何图形之间不存在空隙、也不重叠的几何结构,与密铺或称平面填充、细分曲面不同在于后者指的是二维的空间填充,前者则可以存在任何维度与不同结构中。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在抽象几何学中,二十面体半形是一种抽象正多面体,由一半数量的正二十面体面构成。二十面体半形可被视为是一种射影多面体,可视为由十个三角形构成的实射影平面镶嵌
在抽象几何学中,二十面体半形是一种抽象正多面体,由一半数量的正二十面体面构成。二十面体半形可被视为是一种射影多面体,可视为由十个三角形构成的实射影平面镶嵌
在抽象几何学中,二十面体半形是一种抽象正多面体,由一半数量的正二十面体面构成。二十面体半形可被视为是一种射影多面体,可视为由十个三角形构成的实射影平面镶嵌
在抽象几何学中,二十面体半形是一种抽象正多面体,由一半数量的正二十面体面构成。二十面体半形可被视为是一种射影多面体,可视为由十个三角形构成的实射影平面镶嵌
在几何学中,无限阶三角形镶嵌是一种位于双曲平面仿紧空间镶嵌图形,由正三角形组成,在施莱夫利符号中用{3,∞}来表示,考克斯特-迪肯符号中以表示。每个顶点都是无穷个三角形的公共顶点,也因此使这个图形无法存于平面上。这个图形每一条线都可以做为整个图形的对称线。
在几何学中,无限阶三角形镶嵌是一种位于双曲平面仿紧空间镶嵌图形,由正三角形组成,在施莱夫利符号中用{3,∞}来表示,考克斯特-迪肯符号中以表示。每个顶点都是无穷个三角形的公共顶点,也因此使这个图形无法存于平面上。这个图形每一条线都可以做为整个图形的对称线。
在抽象几何学中,二十面体半形是一种抽象正多面体,由一半数量的正二十面体面构成。二十面体半形可被视为是一种射影多面体,可视为由十个三角形构成的实射影平面镶嵌
在抽象几何学中,二十面体半形是一种抽象正多面体,由一半数量的正二十面体面构成。二十面体半形可被视为是一种射影多面体,可视为由十个三角形构成的实射影平面镶嵌
在抽象几何学中,二十面体半形是一种抽象正多面体,由一半数量的正二十面体面构成。二十面体半形可被视为是一种射影多面体,可视为由十个三角形构成的实射影平面镶嵌