在数论中,素数定理描述素数在自然数中分布的渐进分析情况,给出随着数字的增大,质数的密度逐渐降低的直觉的形式化描述。1896年法国数学家雅克·阿达马和比利时数学家德拉瓦·莱普森先后独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。
在数论中,素数定理描述素数在自然数中分布的渐进分析情况,给出随着数字的增大,质数的密度逐渐降低的直觉的形式化描述。1896年法国数学家雅克·阿达马和比利时数学家德拉瓦·莱普森先后独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。
在数学中,阿达马伽玛函数或阿达马的伽玛函数是除了伽玛函数之外的另一种阶乘的扩展定义方式,以雅克·阿达马命名。此函数可以视为将阶乘的参数向左平移1,并且在阶乘的非整数部分插值,但是有别于欧拉伽玛函数将阶乘扩展到实数和复数的定义。阿达马的伽玛函数的定义为:
在数学中,阿达马伽玛函数或阿达马的伽玛函数是除了伽玛函数之外的另一种阶乘的扩展定义方式,以雅克·阿达马命名。此函数可以视为将阶乘的参数向左平移1,并且在阶乘的非整数部分插值,但是有别于欧拉伽玛函数将阶乘扩展到实数和复数的定义。阿达马的伽玛函数的定义为:
在数学中,阿达玛乘积 ,又名舒尔乘积或逐项乘积,是一个二元运算,其输入为两个相同形状的矩阵,输出是具有同样形状的、各个位置的元素等于两个输入矩阵相同位置元素的乘积的矩阵。此乘积归功于法国数学家雅克·阿达马或德国数学家伊赛·舒尔,并以其命名。
在数学中,阿达马矩阵是一个方块矩阵,每个元素都是 +1 或 −1,每行都是互相正交的。阿达马矩阵常用于纠错码,如 Reed-Muller码。阿达马矩阵的命名来自于法国数学家雅克·阿达马。
在数学中,阿达马矩阵是一个方块矩阵,每个元素都是 +1 或 −1,每行都是互相正交的。阿达马矩阵常用于纠错码,如 Reed-Muller码。阿达马矩阵的命名来自于法国数学家雅克·阿达马。
在数学中,阿达马矩阵是一个方块矩阵,每个元素都是 +1 或 −1,每行都是互相正交的。阿达马矩阵常用于纠错码,如 Reed-Muller码。阿达马矩阵的命名来自于法国数学家雅克·阿达马。
在数学中,阿达玛乘积 ,又名舒尔乘积或逐项乘积,是一个二元运算,其输入为两个相同形状的矩阵,输出是具有同样形状的、各个位置的元素等于两个输入矩阵相同位置元素的乘积的矩阵。此乘积归功于法国数学家雅克·阿达马或德国数学家伊赛·舒尔,并以其命名。
柯西-阿达马公式为复分析中求单复变形式幂级数收敛半径的公式,以法国数学家奥古斯丁·路易·柯西和雅克·阿达马的名字命名。