在几何学中,顶点图是一种用于描述几何图形之顶角特性的方式,大致上是将一个几何图形角被切去时所露出的形状。
稀有多面体又称高贵多面体,是指所有面全等且所有顶角等角的多面体。由于多面体在三维空间的复杂性,要能同时满足等面和等角并不容易,因此这些多面体被称为稀有的或高贵的多面体。除了正多面体外还有不少几何体同时具备等面与等角的特性。早在在19世纪后期,赫斯和布鲁克纳已经对稀有多面体进行了深度的研究,后来则由格林鲍姆接续研究。
稀有多面体又称高贵多面体,是指所有面全等且所有顶角等角的多面体。由于多面体在三维空间的复杂性,要能同时满足等面和等角并不容易,因此这些多面体被称为稀有的或高贵的多面体。除了正多面体外还有不少几何体同时具备等面与等角的特性。早在在19世纪后期,赫斯和布鲁克纳已经对稀有多面体进行了深度的研究,后来则由格林鲍姆接续研究。
在几何学中,顶点图是一种用于描述几何图形之顶角特性的方式,大致上是将一个几何图形角被切去时所露出的形状。