频域 编辑
电子学控制系统统计学中,频域是指在对函数或信号进行分析时,分析其和频率有关部分,而不是和时间有关的部分,和时域一词相对。
2
相关
傅里叶变换是一种线性积分变换,用于信号在时域和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。
在数学中,连续傅里叶变换是一个特殊的把一组函数映射为另一组函数的线性算子。
不严格地说,傅里叶变换就是把一个函数分解为组成该函数的连续频率谱。
在数学分析中,信号



f



{\displaystyle f}

的傅里叶变换被认为是处在频域中的信号。
这一基本思想类似于其他傅里叶变换,如周期函数的傅里叶级数。
在数学和信号处理中,Z转换把一连串离散讯号的实数或复数讯号,从时域转为频域表示。
频谱是指一个时域的信号在频域下的表示方式,可以针对信号进行傅立叶变换而得,所得的结果会是分别以振幅及相位为纵轴,频率为横轴的两张图,不过有时也会省略相位的资讯,只有不同频率下对应振幅的资料。有时也以“振幅频谱”表示振幅随频率变化的情形,“相位频谱”表示相位随频率变化的情形。
傅里叶变换是一种线性积分变换,用于信号在时域和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。
傅里叶变换是一种线性积分变换,用于信号在时域和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。
傅里叶变换是一种线性积分变换,用于信号在时域和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。
傅里叶变换是一种线性积分变换,用于信号在时域和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。
傅里叶变换是一种线性积分变换,用于信号在时域和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。