Curry-Howard同构 编辑
柯里-霍华德对应是在计算机程序和数学证明之间的紧密联系;这种对应也叫做柯里-霍华德同构、公式为类型对应或命题为类型对应。这是对形式逻辑系统和公式计算之间符号的相似性的推广。它被认为是由美国数学家哈斯凯尔·柯里和逻辑学家威廉·阿尔文·霍瓦德独立发现的。
6
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
有类型lambda演算是使用lambda符号指示匿名函数抽象的一种有类型的形式化。有类型lambda演算是基础编程语言并且是有类型的函数式编程语言如ML语言和Haskell和更间接的指令式编程语言的基础。它们通过Curry-Howard同构密切关联于直觉逻辑并可以被认为是范畴论的类的内部语言,比如简单类型lambda演算是笛卡儿闭范畴的语言。
有类型lambda演算是使用lambda符号指示匿名函数抽象的一种有类型的形式化。有类型lambda演算是基础编程语言并且是有类型的函数式编程语言如ML语言和Haskell和更间接的指令式编程语言的基础。它们通过Curry-Howard同构密切关联于直觉逻辑并可以被认为是范畴论的类的内部语言,比如简单类型lambda演算是笛卡儿闭范畴的语言。
有类型lambda演算是使用lambda符号指示匿名函数抽象的一种有类型的形式化。有类型lambda演算是基础编程语言并且是有类型的函数式编程语言如ML语言和Haskell和更间接的指令式编程语言的基础。它们通过Curry-Howard同构密切关联于直觉逻辑并可以被认为是范畴论的类的内部语言,比如简单类型lambda演算是笛卡儿闭范畴的语言。