黑洞是时空展现出极端强大的引力,以致于所有粒子、甚至光这样的电磁辐射都不能逃逸的区域。广义相对论预测,足够紧密的质量可以扭曲时空,形成黑洞;不可能从该区域逃离的边界称为事件视界。虽然,事件视界对穿越它的物体的命运和情况有巨大影响,但对该地区的观测似乎未能探测到任何特征。在许多方面,黑洞就像一个理想的黑体,它不反光。此外,弯曲时空中的量子场论预测,事件视界发出的霍金辐射,如同黑体辐射的热辐射一样,可以用来测量与质量反比的温度。在恒星黑洞,这种温度往往在数十亿分之一热力学温标,因此基本上无法观测。
事件视界望远镜是一个以观测星系中央超大质量黑洞为主要目标的计划。该计划以甚长基线干涉技术结合世界各地的电波望远镜,使许多相隔数十万公里的独立天线能互相协调、同时观测同一目标并记录下数据,形成一口径等效于地球直径的虚拟望远镜,将望远镜的角解析力提升至足以观测事件视界尺度结构的程度。期望借此检验爱因斯坦广义相对论在黑洞附近的强重力场下是否会产生偏差、研究黑洞的吸积盘及超相对论性喷流、探讨事件视界存在与否,并发展基本黑洞物理学。
暗能量星是一种假想的天体,是2005年乔治查·普林提出的理论,他认为黑洞并不存在,而目前发现类似黑洞的现象是暗能量星的作为,一般来说,黑洞是由巨大质量的天体塌缩而成的,而黑洞的中心有一个奇异点,任何东西到黑洞里都会到奇异点然后完全的毁灭,任何相关的资讯都会消失,但是量子力学不容许资讯凭空消失的行为。广义相对论中有提到,当一个东西到黑洞的视界时,相对它的时间就会停止,也就是说,对一个旁观者来说,任何掉进黑洞的物体都会停在在黑洞的视界,而量子力学也不容许时间停止的行为。在解决这两个物理佯谬时,科学家受到与此问题不相关的另一类物理现象的启发,那就是超导晶体越过量子临界点时,出现了一些怪异的行为,像是它们的电子自旋逐渐趋于缓慢,就像是时间停止一样,这跟物体到了黑洞的事件视界一样,而且没有触犯量子力学,而如果在恒星表面发生了这种现象,它将使时间慢下来而形成一种临界层,此表面的行为确实类似于黑洞的视界。根据乔治查·普林的理论当巨大质量的恒星坍塌时,会形成类似上述的临界层,而它的大小就决定于星体的质量,而星体的质量就会变成巨大的真空能量,乔治查·普林相信,在临界层的夸克会衰变成正电子和伽马射线,这也可以解释星系中心的强大的正电子和伽马射线源。
时序保护猜想是由物理学家史蒂芬·霍金提出的一个猜想,即标准广义相对论之外的尚未知晓的物理定律不允许除微观尺度以外的任何时间旅行——哪怕广义相对论表明时间旅行在理论上是可能的。在数学上,广义相对论的场方程的一些解中存在封闭类时曲线,表示时间旅行是可能的。时序保护假说与宇宙审查假说不同,宇宙审查假说中,每条封闭的类时曲线都穿过事件视界,这可能会阻止观察者检测到因果律的违反。
技术奇点,出自引力奇点理论;根据技术发展史总结出的观点,认为人类正在接近一个使得现有技术被完全抛弃或者人类文明被完全颠覆的事件点,在这个事件点以后的事件就像黑洞的事件视界一样完全无法预测。例如,意识上传技术可能使人类的意识摆脱有机体的约束,在这个奇点之后的人类文明将发展到当今完全无法理解的水准。
黑洞是时空展现出极端强大的引力,以致于所有粒子、甚至光这样的电磁辐射都不能逃逸的区域。广义相对论预测,足够紧密的质量可以扭曲时空,形成黑洞;不可能从该区域逃离的边界称为事件视界。虽然,事件视界对穿越它的物体的命运和情况有巨大影响,但对该地区的观测似乎未能探测到任何特征。在许多方面,黑洞就像一个理想的黑体,它不反光。此外,弯曲时空中的量子场论预测,事件视界发出的霍金辐射,如同黑体辐射的热辐射一样,可以用来测量与质量反比的温度。在恒星黑洞,这种温度往往在数十亿分之一热力学温标,因此基本上无法观测。
时序保护猜想是由物理学家史蒂芬·霍金提出的一个猜想,即标准广义相对论之外的尚未知晓的物理定律不允许除微观尺度以外的任何时间旅行——哪怕广义相对论表明时间旅行在理论上是可能的。在数学上,广义相对论的场方程的一些解中存在封闭类时曲线,表示时间旅行是可能的。时序保护假说与宇宙审查假说不同,宇宙审查假说中,每条封闭的类时曲线都穿过事件视界,这可能会阻止观察者检测到因果律的违反。
超越标准模型的物理学是为了弥补标准模型的不足而进行的物理学研究。标准模型不能解释的现象包括质量的形成机制、强CP问题、中微子振荡、重子不对称性以及暗物质和暗能量的性质。而标准模型自身的量子场论也存在着的问题:标准模型与由广义相对论得到的理论模型并不兼容,以致在特定条件下,如大爆炸以及黑洞事件视界这样的时空引力奇点,两个模型中的其中一个甚或是两者全体会失效。
技术奇点,出自引力奇点理论;根据技术发展史总结出的观点,认为人类正在接近一个使得现有技术被完全抛弃或者人类文明被完全颠覆的事件点,在这个事件点以后的事件就像黑洞的事件视界一样完全无法预测。例如,意识上传技术可能使人类的意识摆脱有机体的约束,在这个奇点之后的人类文明将发展到当今完全无法理解的水准。
全像原理,是弦论与预期中的量子重力的性质之一,描述了一个空间的性质可编码在其边界上,例如事件视界的类光边界。
全像原理首先由杰拉德·特·胡夫特提出。之后经李奥纳特·苏士侃演绎出弦论版本的全像原理。,他将特·胡夫特与查尔斯·索恩的成果做结合。1997年由胡安·马尔达西那提出的AdS/CFT对偶是全像原理的特例。
拉斐尔·布索表示:索恩于1978年提出弦论的低维度描述可使重力从中自然而生的结果,是一项全像原理的成果。
全像原理认为目前所见的宇宙是真实宇宙的投影。以较宏观的观点来看,此原理指出了整个宇宙可视为一个呈现在宇宙学视界上的二维资讯结构,而日常观察到的三维空间则是巨观尺度且高能物理的有效描述。值得注意的是,宇宙学全像原理在数学上仍未达精确。