光谱学 编辑
光谱学是利用物质发射、吸收或散射、声或粒子的现象,来研究物质或能量的方法。又称谱学,且因研究对象不同,而有不同名称,例如:能谱学、波谱学、频谱学、质谱学、介电谱学。
2
相关
化学是一门研究物质的性质、组成、结构、以及变化规律的物理的子学科。化学研究的对象涉及物质之间的相互关系,或物质和能量之间的关联。传统的化学常常都是关于两种或以上的物质之间的接触和其后的变化,即化学反应,又或者是一种物质变成另一种物质的过程。这些变化有时会需要使用电磁波,当中电磁波负责激发化学作用。不过有时化学并不一定要关于物质之间的反应。光谱学研究物质与光之间的关系,而这些关系并不涉及化学反应。准确的说,化学的研究范围是包括分子、电子、离子、原子、原子团在内的核-电子体系。
太阳物理学是研究太阳的一门学科,它是天文物理学的分支,对最接近我们的恒星尽可能的进行精密观测,进行研究、利用和解释。它与许多纯科学都有交集,像是物理学、天文物理和计算机科学,包括流体力学、电浆物理学中的磁流体动力学、地震学、粒子物理学、原子物理学、核物理学、恒星演化、空间物理学、光谱学、辐射转移、光学、讯号处理、电脑视觉、计算物理、恒星物理学和太阳天文学。
威廉·华莱士·坎贝尔,美国天文学家,1901年-1930年利克天文台台长,专长于研究光谱学
威廉·克鲁克斯爵士,功绩勋章,皇家学会院士,英国物理学家、化学家,参与皇家化学学院,致力于光谱学研究。
高兆兰,女,云南昆明人,中国光谱学家,曾任中国光学学会副理事长,第三届全国人大代表,第五、六、七届全国政协委员。
塞曼效应,在原子物理学和化学中的光谱学里是指原子的光谱在外磁场中出现分裂的现象,是1896年由荷兰物理学家彼得·塞曼发现的,随后荷兰物理学家亨德里克·洛伦兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。塞曼效应也在核磁共振频谱学、电子自旋共振频谱学、磁振造影以及穆斯堡尔谱学方面有重要的应用。
天体光谱学是天文学使用光谱学技术测量包括可见光、电波等,来自恒星和其他天体的电磁频谱等辐射能量。恒星光谱可以显示恒星的许多性质,例如其化学成分、温度、密度、质量、距离、亮度和使用多普勒效应测量相对运动。许多其他类型天体,例如行星、星云、星系和活跃星系核等的物理性质,也可以用光谱学来研究。
太阳物理学是研究太阳的一门学科,它是天文物理学的分支,对最接近我们的恒星尽可能的进行精密观测,进行研究、利用和解释。它与许多纯科学都有交集,像是物理学、天文物理和计算机科学,包括流体力学、电浆物理学中的磁流体动力学、地震学、粒子物理学、原子物理学、核物理学、恒星演化、空间物理学、光谱学、辐射转移、光学、讯号处理、电脑视觉、计算物理、恒星物理学和太阳天文学。
沃夫1061是一颗光谱型恒星光谱的红矮星,位于蛇夫座中。它距离太阳临近恒星列表,只有13.8光年。它的自行较大,达到每年1.2角秒。和许多红矮星一样的是,它的自转周期可能长达100日以上,虽然精确周期仍难以精确量测。沃夫1061是非常稳定的恒星,并且没有明显的星斑或耀斑等表面活动。至今尚未发现沃夫1061有任何异常的光谱学特征。该恒星最早于1919年由德国天文学家马克斯·沃夫出版的高自行暗星星表中被收入,并编为第1061颗恒星。
有机化学是研究有机化合物及有机物质的结构、性质、反应的学科,是化学中极重要的一个分支。有机化学研究的对象是以不同形式包含碳原子的物质,又称为碳化合物的化学。有关有机化合物或有机物质结构的研究包括用光谱学、核磁共振、红外光谱、紫外光谱、质谱或其他物理或化学方式来确认其组成的元素、组成方式、实验式及化学式。有关性质的研究包括其物理性质及化学性质,也需评估其化学反应性,目的是要了解有机物质在其纯物质形式,以及在溶液中或是混合物中的性质。有机反应的研究包括有机物质的制备,以及其化学反应,可能是在实验室中的,或是In silico。有机化学研究的范围包括碳氢化合物,也就是只由碳和氢组成的化合物,化合物中也有可能还会参与其他的元素,包括氮、氧和卤素,还有诸如磷、硫等元素。
。有机化学和许多相关领域有重叠,包括药物化学、生物化学、有机金属化学、高分子化学以及材料科学等。有机化合物之所以引起研究者浓厚的兴趣,是因为碳原子可以形成稳定的长碳链或碳环以及许许多多种的官能团,这种性质造就有机化合物的多样性。有机化合物是所有碳基生物的基础。有机化合物的应用范围很广,包括医学、塑胶、药物、石化产物、食物、化妆品、护理用品、炸药及涂料等。