商环 编辑
环论中,商环是环对一个理想的商结构。
2
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
理想是一个环论中的概念。
若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。
通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。
理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。
理想是一个环论中的概念。
若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。
通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。
理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。
理想是一个环论中的概念。
若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。
通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。
理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。
理想是一个环论中的概念。
若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。
通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。
理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。
理想是一个环论中的概念。
若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。
通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。
理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。
理想是一个环论中的概念。
若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。
通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。
理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。
理想是一个环论中的概念。
若某环之一子集与原先的加法自成一群,且该子环内所有元素与原环之元素相乘的结果均在其内,则称其为原环的理想。
通俗地说,一环的理想在加法上成群且在乘法上表现如同一个黑洞。
理想把整数的某些子集,例如偶数或3的倍数组成的集合给一般化了。两个偶数相加或相减结果仍是偶数,偶数与任意整数相乘的结果也仍是偶数;这些闭包和吸收的性质正是理想的定义。理想可以被用来构造商环,这类似于在群论里,正规子群可以被用来构造商群。