在密码学中,加密是将明文信息改变为难以读取的密文内容,使之不可读的过程。只有拥有解密方法的对象,经由解密过程,才能将密文还原为正常可读的内容。理想情况下,只有经授权的人员能够读取加密文所要传达的信息。加密本身并不能防止信息传输被截取,但加密能防止截取者理解其内容。因为种种技术原因,加密方法通常使用一个通过算法生成的伪随机密钥。虽然任何加密后的消息都可能被破解,但对于一个良好的加密算法而言,破解需要相当多的技术和算力。授权读取信息的人可以轻松通过发信人所提供的密钥解密信息,但未经授权的人员则不行。密码学历史中有众多加密方法;早期的加密方法常用于军事通讯。从此开始,现代计算中也出现了众多加密技术,并且加密在现代计算中也变得越来越常见。 现代的加密方式通常使用公钥或对称密钥。现代加密技术依赖现代计算机在破解密钥上并不高效的事实来保证其安全性。
迪菲-赫尔曼密钥交换 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公钥交换的概念最早由瑞夫·墨克提出,而这个密钥交换方法,由惠特菲尔德·迪菲和马丁·赫尔曼在1976年首次发表。马丁·赫尔曼曾主张这个密钥交换方法,应被称为迪菲-赫尔曼-墨克密钥交换。
在密码学中,密钥派生函数使用伪随机函数从诸如主密钥或密码的秘密值中派生出一个或多个密钥。KDF可用于将密钥扩展为更长的密钥或获取所需格式的密钥,例如将作为迪菲-赫尔曼密钥交换结果的组元素转换为用于高级加密标准的对称密钥。用于密钥派生的伪随机函数最常见的示例是密码散列函数。
在密码学中,分组加密,又称分块加密或块密码,是一种对称密钥算法。它将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。分组加密是极其重要的加密协议组成,其中典型的如高级加密标准和3DES作为美国政府核定的标准加密算法,应用领域从电子邮件加密到银行交易转帐,非常广泛。
在密码学中,分组加密,又称分块加密或块密码,是一种对称密钥算法。它将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。分组加密是极其重要的加密协议组成,其中典型的如高级加密标准和3DES作为美国政府核定的标准加密算法,应用领域从电子邮件加密到银行交易转帐,非常广泛。
在密码学中,分组加密,又称分块加密或块密码,是一种对称密钥算法。它将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。分组加密是极其重要的加密协议组成,其中典型的如高级加密标准和3DES作为美国政府核定的标准加密算法,应用领域从电子邮件加密到银行交易转帐,非常广泛。
在密码学中,分组加密,又称分块加密或块密码,是一种对称密钥算法。它将明文分成多个等长的模块,使用确定的算法和对称密钥对每组分别加密解密。分组加密是极其重要的加密协议组成,其中典型的如高级加密标准和3DES作为美国政府核定的标准加密算法,应用领域从电子邮件加密到银行交易转帐,非常广泛。
在密码学中,加密是将明文信息改变为难以读取的密文内容,使之不可读的过程。只有拥有解密方法的对象,经由解密过程,才能将密文还原为正常可读的内容。理想情况下,只有经授权的人员能够读取加密文所要传达的信息。加密本身并不能防止信息传输被截取,但加密能防止截取者理解其内容。因为种种技术原因,加密方法通常使用一个通过算法生成的伪随机密钥。虽然任何加密后的消息都可能被破解,但对于一个良好的加密算法而言,破解需要相当多的技术和算力。授权读取信息的人可以轻松通过发信人所提供的密钥解密信息,但未经授权的人员则不行。密码学历史中有众多加密方法;早期的加密方法常用于军事通讯。从此开始,现代计算中也出现了众多加密技术,并且加密在现代计算中也变得越来越常见。 现代的加密方式通常使用公钥或对称密钥。现代加密技术依赖现代计算机在破解密钥上并不高效的事实来保证其安全性。
迪菲-赫尔曼密钥交换 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公钥交换的概念最早由瑞夫·墨克提出,而这个密钥交换方法,由惠特菲尔德·迪菲和马丁·赫尔曼在1976年首次发表。马丁·赫尔曼曾主张这个密钥交换方法,应被称为迪菲-赫尔曼-墨克密钥交换。
迪菲-赫尔曼密钥交换 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公钥交换的概念最早由瑞夫·墨克提出,而这个密钥交换方法,由惠特菲尔德·迪菲和马丁·赫尔曼在1976年首次发表。马丁·赫尔曼曾主张这个密钥交换方法,应被称为迪菲-赫尔曼-墨克密钥交换。