天体物理学,又称天文物理学,是研究宇宙的物理学,这包括星体的物理性质和星体与星体彼此之间的交互作用。应用物理理论与方法,天体物理学探讨恒星演化、恒星结构、星际物质、宇宙微波背景、太阳系的起源和许多跟宇宙学相关的问题。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同的学术领域,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学以及原子分子与光物理学等等。由于近代跨学科的发展,与化学、生物、历史、计算机、工程、古生物学、考古学、气象学等学科的混合,天体物理学目前大小分支300—500门主要专业分支,成为物理学当中最前沿的庞大领导学科,是引领近代科学及科技重大发展的前导科学,同时也是历史最悠久的古老传统科学。
次巨星是有着与正常主序星相同的光谱类型,但比较明亮,却又不如巨星明亮的恒星。次巨星这个名词既可以指恒星演化的一个阶段,又可以指一个特定的恒星光度分类。
中子星,是恒星演化到末期,经由引力坍缩发生超新星之后,可能成为的少数致密星之一。恒星在核心的氢、氦、碳等元素于核聚变反应中耗尽,并最终转变成铁元素后,便无法再从核聚变中获得能量。失去热辐射压力支撑的外围物质受重力牵引会急速向核心坠落,有可能导致外壳的动能转化为热能向外爆发产生超新星爆炸,或者根据恒星质量的不同,恒星内部区域被压缩成白矮星、中子星或黑洞。
天体物理学,又称天文物理学,是研究宇宙的物理学,这包括星体的物理性质和星体与星体彼此之间的交互作用。应用物理理论与方法,天体物理学探讨恒星演化、恒星结构、星际物质、宇宙微波背景、太阳系的起源和许多跟宇宙学相关的问题。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同的学术领域,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学以及原子分子与光物理学等等。由于近代跨学科的发展,与化学、生物、历史、计算机、工程、古生物学、考古学、气象学等学科的混合,天体物理学目前大小分支300—500门主要专业分支,成为物理学当中最前沿的庞大领导学科,是引领近代科学及科技重大发展的前导科学,同时也是历史最悠久的古老传统科学。
天体物理学,又称天文物理学,是研究宇宙的物理学,这包括星体的物理性质和星体与星体彼此之间的交互作用。应用物理理论与方法,天体物理学探讨恒星演化、恒星结构、星际物质、宇宙微波背景、太阳系的起源和许多跟宇宙学相关的问题。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同的学术领域,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学以及原子分子与光物理学等等。由于近代跨学科的发展,与化学、生物、历史、计算机、工程、古生物学、考古学、气象学等学科的混合,天体物理学目前大小分支300—500门主要专业分支,成为物理学当中最前沿的庞大领导学科,是引领近代科学及科技重大发展的前导科学,同时也是历史最悠久的古老传统科学。
太阳物理学是研究太阳的一门学科,它是天文物理学的分支,对最接近我们的恒星尽可能的进行精密观测,进行研究、利用和解释。它与许多纯科学都有交集,像是物理学、天文物理和计算机科学,包括流体力学、电浆物理学中的磁流体动力学、地震学、粒子物理学、原子物理学、核物理学、恒星演化、空间物理学、光谱学、辐射转移、光学、讯号处理、电脑视觉、计算物理、恒星物理学和太阳天文学。
北河三,即双子座β星,是一颗位于双子座,距离太阳约34光年,已经恒星演化呈现橙色色调的巨星。它是最接近太阳的巨星。
质量和年龄不同的恒星,有着不同的内部结构,恒星结构模型叙述恒星的详细结构,要能预测详细的光度、分类和恒星演化。
致密星是白矮星、中子星、奇特星、黑洞等一类致密天体的总称,它们与正常星的主要区别是不再有核燃料进行聚变反应,热压力不足以与自身的引力保持平衡,因而塌缩成尺度非常小、密度非常大的天体。致密星通常是恒星演化末期的终结形态,恒星演化为何种致密星主要取决于恒星的质量。一般来说,质量在1倍至6倍太阳质量的恒星最终演化成白矮星,并伴随有质量损失,其外壳向外抛出,形成行星状星云。质量为3至8倍太阳质量的恒星演化成中子星,更大质量的恒星则坍缩成黑洞。
大陵五佯谬,是恒星天文学中联星成员的恒星演化似乎与确定的恒星演化理论背道而驰的现象。这些演化理论的一个基本论点是恒星演化取决于恒星的质量:质量越大的恒星,演化得越快,也越先离开主序带,进入次巨星或巨星的阶段。