氢键 编辑
氢键是分子间作用力的一种,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的原子与另一个原子之间,通常发生氢键作用的氢原子两边的原子都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键金属键键能要小,但强于静电引力
2
相关
纳米技术是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国国家奈米科技启动计划将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。纳米科技的世界为原子、分子、高分子、量子点集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化等以表面为主的科学新的可能性。
鸟嘌呤是五种不同碱基中的其中之一,并同时存在于脱氧核糖核酸及核糖核酸中。鸟嘌呤是嘌呤的一种,并与胞嘧啶以三个氢键相连。
亲水性指分子能够透过氢键和水分子形成短暂键结的物理性质。因为热力学上合适,这种分子不只可以溶解在水里,也可以溶解在其他的极性溶液内。
人类基因组,又称人类基因体,是一套完整的人类核酸序列,其被编码成“细胞核中23对染色体的DNA”及“线粒体中小DNA分子”;通常被分成核基因组和线粒体基因组两类探讨。人类基因组含有约30亿个DNA碱基对,碱基对是以氢键相结合的两个含氮碱基,以胸腺嘧啶、腺嘌呤、胞嘧啶和鸟嘌呤四种碱基排列成碱基序列,其中A与T之间由两个氢键连接,G与C之间由三个氢键连接,碱基对的排列在DNA中也只能是A对T,G对C。其中一部分的碱基对组成了大约20000到25000个蛋白质编码基因。
共价键,是化学键的一种。两个或多个非金属原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构。与离子键不同的是,进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。同一种元素的原子或不同元素的原子都可以通过共​​价键结合,一般共价键结合的产物是分子,在少数情况下也可以形成晶体。又称为共产链。
超分子是在1937年由德国化学家K.L. Wolf提出,最早是形容由氢键键结的乙酸二聚体。超分子化学是有关分子错合物非共价键的相关研究。“超分子”一词有时是指超分子组装,是由二个或多个彼此没有形成共价键结的分子所组成的错合物 。在生物化学中,“超分子”是指像肽及寡核苷酸等由生物分子组成的错合物。
非共价键并不依赖电子间的共享,而是依赖正负电荷间的吸引力,因此吸力较弱,故仅需较小的力量就可将之打断。非共价键主要出现于超分子化学中,所担任的角色为:维持脱氧核糖核酸或蛋白质的三度空间外型及功能。它包含有氢键、疏水相互作用及范德华力等,一般数量级在1-5kcal/mol之间。
纳米技术是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国国家奈米科技启动计划将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。纳米科技的世界为原子、分子、高分子、量子点集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化等以表面为主的科学新的可能性。
非共价键并不依赖电子间的共享,而是依赖正负电荷间的吸引力,因此吸力较弱,故仅需较小的力量就可将之打断。非共价键主要出现于超分子化学中,所担任的角色为:维持脱氧核糖核酸或蛋白质的三度空间外型及功能。它包含有氢键、疏水相互作用及范德华力等,一般数量级在1-5kcal/mol之间。
纳米技术是一门应用科学,其目的在于研究于纳米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国国家奈米科技启动计划将其定义为“1至100纳米尺寸尤其是现存科技在纳米规模时的延伸”。纳米科技的世界为原子、分子、高分子、量子点集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化等以表面为主的科学新的可能性。