人工神经网络,简称神经网络或类神经网络,在机器学习和认知科学领域,是一种仿生学生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗地讲就是具备学习功能。现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题,这种方法比起正式的逻辑学推理演算更具有优势。
人工神经网络,简称神经网络或类神经网络,在机器学习和认知科学领域,是一种仿生学生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗地讲就是具备学习功能。现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题,这种方法比起正式的逻辑学推理演算更具有优势。
连接组学绘制与研究神经连接组:这是一种刻画有机体神经系统的生物神经网络的完整线路图。由于这些结构极其复杂,高效筛选的神经成像和组织学方法被用于提高绘制神经连接线路图的速度、效率和精度。尽管连接组学的主要研究对象是大脑,但其他任何神经连接也可由连接组学的方法测绘,例如神经肌肉接点。
连接组是大脑中生物神经网络的综合图,可以被认为是其“接线图”。 更广泛地说,连接组将包括生物体神经系统内所有神经连接的映射。
神经编码是一个和神经科学相关的领域,研究外界刺激与特定的神经元或者神经元组合之间的电生理学关系,以及这些神经元组合电活动之间的关系。 感觉信息与其它信息,都是由脑中的生物神经网络来承载与呈现,基于这个理论,人们认为神经元既可以编码数字信号,也可以编码模拟信号。
人工神经网络,简称神经网络或类神经网络,在机器学习和认知科学领域,是一种仿生学生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗地讲就是具备学习功能。现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题,这种方法比起正式的逻辑学推理演算更具有优势。
连接组学绘制与研究神经连接组:这是一种刻画有机体神经系统的生物神经网络的完整线路图。由于这些结构极其复杂,高效筛选的神经成像和组织学方法被用于提高绘制神经连接线路图的速度、效率和精度。尽管连接组学的主要研究对象是大脑,但其他任何神经连接也可由连接组学的方法测绘,例如神经肌肉接点。
连接组是大脑中生物神经网络的综合图,可以被认为是其“接线图”。 更广泛地说,连接组将包括生物体神经系统内所有神经连接的映射。
人工神经网络,简称神经网络或类神经网络,在机器学习和认知科学领域,是一种仿生学生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗地讲就是具备学习功能。现代神经网络是一种非线性统计性数据建模工具,神经网络通常是通过一个基于数学统计学类型的学习方法得以优化,所以也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题,这种方法比起正式的逻辑学推理演算更具有优势。