等值曲面 编辑
等值曲面是一种曲面。在空间里,假若,每一点都有一个设定的值。这值可能是压力、温度、速度、密度。那么,一个等值曲面所包含的每一个点,其设定值是一样的。换句话说,以三维空间为定义域的连续函数,其每一个水平集都是一个等值曲面。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在数学里,一个正交坐标系定义为一组正交坐标系




q

=



{\displaystyle \mathbf {q} =}

,其坐标曲面都以直角相交。坐标曲面定义为特定坐标




q

i




{\displaystyle q_{i}}

等值曲面,即




q

i




{\displaystyle q_{i}}

为常数的曲线、曲面或超曲面。例如,三维直角坐标






{\displaystyle }

是一种正交坐标系,它的



x


{\displaystyle x}

为常数,



y


{\displaystyle y}

为常数,



z


{\displaystyle z}

为常数的坐标曲面,都是互相以直角相交的平面,都互相垂直。正交坐标系是曲线坐标系的特殊的但极其常见的形式。
在数学里,一个正交坐标系定义为一组正交坐标系




q

=



{\displaystyle \mathbf {q} =}

,其坐标曲面都以直角相交。坐标曲面定义为特定坐标




q

i




{\displaystyle q_{i}}

等值曲面,即




q

i




{\displaystyle q_{i}}

为常数的曲线、曲面或超曲面。例如,三维直角坐标






{\displaystyle }

是一种正交坐标系,它的



x


{\displaystyle x}

为常数,



y


{\displaystyle y}

为常数,



z


{\displaystyle z}

为常数的坐标曲面,都是互相以直角相交的平面,都互相垂直。正交坐标系是曲线坐标系的特殊的但极其常见的形式。
在数学里,一个正交坐标系定义为一组正交坐标系




q

=



{\displaystyle \mathbf {q} =}

,其坐标曲面都以直角相交。坐标曲面定义为特定坐标




q

i




{\displaystyle q_{i}}

等值曲面,即




q

i




{\displaystyle q_{i}}

为常数的曲线、曲面或超曲面。例如,三维直角坐标






{\displaystyle }

是一种正交坐标系,它的



x


{\displaystyle x}

为常数,



y


{\displaystyle y}

为常数,



z


{\displaystyle z}

为常数的坐标曲面,都是互相以直角相交的平面,都互相垂直。正交坐标系是曲线坐标系的特殊的但极其常见的形式。