1 + 1 + 1 + 1 + …,亦写作
∑
n
=
1
∞
n
0
{\displaystyle \sum _{n=1}^{\infty }n^{0}}
,
∑
n
=
1
∞
1
n
{\displaystyle \sum _{n=1}^{\infty }1^{n}}
或
∑
n
=
1
∞
1
{\displaystyle \sum _{n=1}^{\infty }1}
,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下:
1 + 1 + 1 + 1 + …,亦写作
∑
n
=
1
∞
n
0
{\displaystyle \sum _{n=1}^{\infty }n^{0}}
,
∑
n
=
1
∞
1
n
{\displaystyle \sum _{n=1}^{\infty }1^{n}}
或
∑
n
=
1
∞
1
{\displaystyle \sum _{n=1}^{\infty }1}
,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下:
1 + 1 + 1 + 1 + …,亦写作
∑
n
=
1
∞
n
0
{\displaystyle \sum _{n=1}^{\infty }n^{0}}
,
∑
n
=
1
∞
1
n
{\displaystyle \sum _{n=1}^{\infty }1^{n}}
或
∑
n
=
1
∞
1
{\displaystyle \sum _{n=1}^{\infty }1}
,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下:
1 + 1 + 1 + 1 + …,亦写作
∑
n
=
1
∞
n
0
{\displaystyle \sum _{n=1}^{\infty }n^{0}}
,
∑
n
=
1
∞
1
n
{\displaystyle \sum _{n=1}^{\infty }1^{n}}
或
∑
n
=
1
∞
1
{\displaystyle \sum _{n=1}^{\infty }1}
,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下: