等距同构 编辑
数学中,等距同构
,或称保距映射,简称等距,是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。
9
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
在数学和物理学中,空间群是空间中一种形态的空间对称群。在三维空间中有219种不同的类型,或230种不同的手性类型。对超过三维的空间中的空间群也有研究,它们有时被称作比贝尔巴赫群,并且是离散的紧群,具有欧氏空间的等距同构
一个物件的对称群是指在复合函数运算下不变的所有等距同构所构成的群。其为所考虑之空间的等距同构中的一个子群。
在数学,特别是李群、代数群与拓扑群的理论中,关于群G的一个齐性空间是一个非空流形或拓扑空间X,G可传递地作用在X上,G中的元素称之为X的对称。一个特例是空间X的自同构,这里自同构群可以是等距同构、微分同胚或是同胚。在这些例子中,如果直觉想成X于任何地方局部看起来一样,则X是齐性的。像是等距同构、微分同胚或是同胚。一些作者要求G的作用是群作用,不过本文并不要求这样。从而X上存在可以想象为保持X上相同“几何结构”的一个群作用,使X成为一个单轨道。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
在数学里,尤其是在李群的理论中,一根系的外尔群是指经由正交于根之超平面的镜面而产生之根系的等距同构群之子群。例如,根系A2包含中心为原点之正六边形的角。根系的对称之整个群因此是有12阶的二面体群。外尔群产生于将六边形平分成两半的线之镜射;其为6阶的二面体群。
在数学里,尤其是在李群的理论中,一根系的外尔群是指经由正交于根之超平面的镜面而产生之根系的等距同构群之子群。例如,根系A2包含中心为原点之正六边形的角。根系的对称之整个群因此是有12阶的二面体群。外尔群产生于将六边形平分成两半的线之镜射;其为6阶的二面体群。
几何学中,三维点群是三维空间中,任何一个固定原点的空间对称群。等价的说法是,其为球面的对称群。此类群皆为正交群



O



{\displaystyle O}

的子群,即固定原点的全体等距同构组成的群,亦可视为全体正交矩阵的乘法群。



O



{\displaystyle O}

本身则是全体等距同构的欧氏群



E



{\displaystyle E}

的子群。