线性空间基 编辑
线性代数中,基
6
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。