在概率论和统计学中,两事件R和B在给定的另一事件Y发生时条件独立,类似于统计独立性,就是指当事件Y发生时,R发生与否和B发生与否就条件概率分布而言是独立的。换句话讲,R和B在给定Y发生时条件独立,当且仅当已知Y发生时,知道R发生与否无助于知道B发生与否,同样知道B发生与否也无助于知道R发生与否。
集中不等式是数学中的一类不等式,描述了一个随机变量是否集中在某个取值附近。例如大数定律说明了一系列统计独立性同概率分布随机变量的平均值在概率上趋近于它们的数学期望,这表示随着变量数目增大,平均值会集中在数学期望附近。
在概率论及统计学中,马可夫过程是一个具备了马可夫性质的随机过程,因为俄国数学家安德雷·马可夫得名。马可夫过程是不具备记忆特质的。换言之,马可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态,都是统计独立性、不相关的。
,在机器学习中是一系列以假设特征之间强统计独立性下运用贝叶斯定理为基础的简单概率分类器。
,在机器学习中是一系列以假设特征之间强统计独立性下运用贝叶斯定理为基础的简单概率分类器。