耦合 编辑
耦合可以指:
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
副翼是固定翼飞机机翼后缘上一对对称的操纵面,用以控制飞行器的滚转运动。副翼通过左右差动偏转在两侧机翼上造成升力差,并且产生滚转力矩。由于固定翼飞行器的滚转轴运动和航向轴运动耦合,副翼结合升降舵也可以用来控制飞机的航向运动。因此是一种非常重要的操纵面。现今大多数固定翼飞行器上都具有副翼。
在电子学和电信领域,耦合是指能量从一个介质传播到另一种介质的过程。
平滑肌,是非横纹肌的肌肉组织。在人体,平滑肌分布在动脉和静脉血管管壁、膀胱、子宫、男性生殖系统和女性生殖道、消化道、呼吸道、眼睛的睫状肌和虹膜。平滑肌与骨骼肌和心肌在结构、功能、耦合机制、收缩状态等均相异。
S对偶是弦论中的一种对偶性。它将一种理论的耦合常数与另一种理论的耦合常数联系起来,因此又称为强弱对偶性。举例来说,O型杂弦和I型弦在10维时空就有S对偶性。这意味着O型杂弦的强耦合极限就是I型弦论的弱耦合极限,反之亦然。寻求强弱耦合对偶性的证据的方法之一是比较每种物理图景的轻态谱,看看两者是否一致。比如I型弦论的 D膜在弱耦合时较重而在强耦合时较轻。这种D弦与O型杂弦的世界面传播同样的轻态场。于是当I型弦论的D弦因很强的耦合而变得很轻时,我们就看到上述杂化弦描述的却是弱耦合的情形。
10维时空中还有一种S对偶,那就是IIB 型弦论的自身对偶性。IIB 型弦的强耦合极限也是IIB 型弦论的另外一种弱耦合极限。IIB型弦论中也含一种D弦且这种D 弦在强耦合下变成轻态。不过这种D弦看上去却像是IIB型弦论的另一种基本弦。在IIB型弦论中,运动的能量方程有两种广义解:D膜和弦论。D弦在强耦合下同了弱耦合下的F弦,这就是所谓的IIB型弦论的自身对偶性。
量子耗散的研究目标是在量子力学的基础上推导出经典耗散定律。量子耗散与量子退相干有紧密联系。它在量子力学的层面上研究了能量的不可逆损耗。
量子力学建立在哈密顿量的基础上,系统总能量守恒,原则上讲,这样的系统不可能描述能量耗散过程。为了克服这个局限性,将系统分作两部分,一部分是能量发生耗散的系统,一部分叫做“浴”,即该系统所处的环境,系统耗散掉的能量将会流入浴中。系统与浴的耦合取决于描述浴的微观细节。为了不可逆的能量流动,浴含有无数个自由度。
1963年,费曼与Vernon的文章里给出了关于浴的最简单的模型,浴被看作是由无数个谐振子组成的集合。量子力学中,谐振子可用于描述自由玻色子。
多处理器,是一个紧密耦合的电脑系统,拥有超过一个以上的处理单元,共享同一个主内存与周边装置,它能够让多个程式同时执行。这种电脑硬件架构,就称为多处理器,它能够提供多元处理的能力。
多处理器,是一个紧密耦合的电脑系统,拥有超过一个以上的处理单元,共享同一个主内存与周边装置,它能够让多个程式同时执行。这种电脑硬件架构,就称为多处理器,它能够提供多元处理的能力。
平滑肌,是非横纹肌的肌肉组织。在人体,平滑肌分布在动脉和静脉血管管壁、膀胱、子宫、男性生殖系统和女性生殖道、消化道、呼吸道、眼睛的睫状肌和虹膜。平滑肌与骨骼肌和心肌在结构、功能、耦合机制、收缩状态等均相异。
量子耗散的研究目标是在量子力学的基础上推导出经典耗散定律。量子耗散与量子退相干有紧密联系。它在量子力学的层面上研究了能量的不可逆损耗。
量子力学建立在哈密顿量的基础上,系统总能量守恒,原则上讲,这样的系统不可能描述能量耗散过程。为了克服这个局限性,将系统分作两部分,一部分是能量发生耗散的系统,一部分叫做“浴”,即该系统所处的环境,系统耗散掉的能量将会流入浴中。系统与浴的耦合取决于描述浴的微观细节。为了不可逆的能量流动,浴含有无数个自由度。
1963年,费曼与Vernon的文章里给出了关于浴的最简单的模型,浴被看作是由无数个谐振子组成的集合。量子力学中,谐振子可用于描述自由玻色子。
平滑肌,是非横纹肌的肌肉组织。在人体,平滑肌分布在动脉和静脉血管管壁、膀胱、子宫、男性生殖系统和女性生殖道、消化道、呼吸道、眼睛的睫状肌和虹膜。平滑肌与骨骼肌和心肌在结构、功能、耦合机制、收缩状态等均相异。