解析解 编辑
解析解,又称为闭式解,是可以用解析表达式来表达的解。
数学上,如果一个方程或者方程组存在的某些解,是由有限次常见运算的组合给出的形式,则称该方程存在解析解。二次方程的根就是一个解析解的典型例子。在低年级数学的教学当中,解析解也被称为公式解。
8
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
类氢原子是只拥有一个电子的原子,与氢原子同为等电子体,例如,氦, 锂, 铍与硼等等都是类氢原子,又称为“类氢离子”。类氢原子只含有一个原子核与一个电子,是个简单的二体问题,系统内的作用力只跟二体之间的距离有关,是反平方定律连心力。这反平方连心力二体系统不需再加理想化,简单化。描述这系统的薛定谔方程式有解析解,也就是说,解答能以有限数量的常见函数来表达。满足这薛定谔方程式的波函数可以完全地描述电子的量子行为。在量子力学里,类氢原子问题是一个很简单,很实用,而又有解析解的问题。所推演出来的基本物理理论,又可以用简单的实验来核对。所以,类氢原子问题是个很重要的问题。
运算模型是运算科学中的一个数学模型,它使用大量的运算资源来用计算机模拟研究一个复杂系统的行为。被研究的系统通常是一个复杂的非线性系统,这种系统不易取得简单、直观的解析解。相比于推导数学分析来解决问题,它是通过在计算机中调整系统参数并研究实验结果的差异来完成模型。模型的操作理论可以从这些实验来推断/推导。
运算模型是运算科学中的一个数学模型,它使用大量的运算资源来用计算机模拟研究一个复杂系统的行为。被研究的系统通常是一个复杂的非线性系统,这种系统不易取得简单、直观的解析解。相比于推导数学分析来解决问题,它是通过在计算机中调整系统参数并研究实验结果的差异来完成模型。模型的操作理论可以从这些实验来推断/推导。
在量子力学里,量子谐振子是谐振子的延伸。其为量子力学中数个重要的模型系统中的一者,因为一任意势在稳定平衡点附近可以用谐振子势来近似。此外,其也是少数几个存在简单解析解的量子系统。量子谐振子可用来近似描述分子振动。
超越方程是包含超越函数的方程,也就是方程中有无法用自变数的多项式或开方表示的函数,与超越方程相对的是代数方程。超越方程的求解无法利用代数几何来进行。大部分的超越方程求解没有一般的公式,也很难求得解析解
运算模型是运算科学中的一个数学模型,它使用大量的运算资源来用计算机模拟研究一个复杂系统的行为。被研究的系统通常是一个复杂的非线性系统,这种系统不易取得简单、直观的解析解。相比于推导数学分析来解决问题,它是通过在计算机中调整系统参数并研究实验结果的差异来完成模型。模型的操作理论可以从这些实验来推断/推导。
线性动态系统是指其评价函数为线性的动态系统。一般的动态系统不一定存在解析解,但某些简单的线性动态系统,解为解析解,而且存在很多的数学性质。可以计算动态系统在某一平衡点附近的行为,将其近似为线性动态系统,就可以用近似的线性动态系统了解此动态系统的一些特性。
在量子力学里,量子谐振子是谐振子的延伸。其为量子力学中数个重要的模型系统中的一者,因为一任意势在稳定平衡点附近可以用谐振子势来近似。此外,其也是少数几个存在简单解析解的量子系统。量子谐振子可用来近似描述分子振动。
超越方程是包含超越函数的方程,也就是方程中有无法用自变数的多项式或开方表示的函数,与超越方程相对的是代数方程。超越方程的求解无法利用代数几何来进行。大部分的超越方程求解没有一般的公式,也很难求得解析解