N维球面 编辑
n维球面是普通的球面在任意维度的推广。它是维空间内的n维流形。特别地,0维球面就是直线上的两个点,1维球面是平面上的,2维球面是三维空间内的普通球面。高于2维的球面有时称为超球面。中心位于原点且半径为单位长度的n维球面称为单位n维球面,记为S。用符号来表示,就是:
1
相关
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面
在代数拓扑中,拓扑空间



X


{\displaystyle X}

上的平均运算是



X


{\displaystyle X}

上的连续函数、交换律、幂等的二元运算。若这个运算还是结合律的,则它定义了一个半格。确定什么样的空间上允许有平均运算是一个经典的问题。例如,欧几里得空间上可以定义平均运算,就是通常的向量算术平均数。但N维球面上不行,包括圆。
球座标系是数学上利用球座标






{\displaystyle }

表示一个点P在三维空间的位置的三维正交座标系座标系。右图显示了球座标的几何意义:原点与点P之间的“径向距离”



r


{\displaystyle r}

,原点到点P的连线与正z-轴之间的“极角”



θ


{\displaystyle \theta }

,以及原点到点P的连线在xy-平面的投影,与正x-轴之间的“方位角”



φ


{\displaystyle \varphi }

。它可以被视为极坐标系的三维推广。球座标的概念,延伸至高维空间,则称为N维球面