RNA诱导沉默复合体 编辑
RNA诱导沉默复合物,是在RNA干扰技术中起作用的重要物质。一定数量的外源性双链RNA进入细胞后,被类似于核糖核酸酶Ⅲ的Dicer酶切割成短的21~23bp的双链小干扰RNA,siRNA与解旋酶和其它因子结合,形成RNA诱导沉默复合物。激活RISC需要一个依赖ATP的将小分子RNA解双链的过程。激活的RISC通过碱基配对定位到同源mRNA转录本上,并在距离siRNA 3'端12个碱基的位置切割mRNA。切割的机制尚不明了,但每个RISC都包含一个siRNA和一个不同于Dicer的RNA酶。因此,siRNA能够以序列同源互补的mRNA为靶点,通过促使特定基因的mRNA降解来高效、特意地阻断体内特定基因表达,诱发细胞呈现出特定基因表达降低表型。
2
相关
核糖核酸内切酶是一种核糖核酸酶,对核糖核酸内一定碱基序列中某一定位置发生作用,把这位置的链切开,再由核糖核酸外切酶进行分解剪切。可以是单个蛋白,如RNase III、RNase A、RNase T1和RNase H,也可以是单个或多个蛋白与RNA的复合体,如核酶RNase P和RNA诱导沉默复合体
多聚腺苷酸结合蛋白是真核生物细胞中一类可与MRNA3端的多腺苷酸化结合的蛋白质。多聚腺苷酸结合蛋白最早被发现的功能是保护mRNA不被水解,后续研究发现它还可与许多RNA序列与蛋白结合,参与许多其他基因表现机制。转译时起始时PABP结合多腺苷酸尾后,可和与mRNA5端结合的起始因子真核起始因子4G结合,令mRNA形成一环状结构,促进43S前起始复合物的结合以开始转译;转译终止时PABP可能与eRF3结合以促进终止;RNA干扰途径中RNA诱导沉默复合体与mRNA的3'非转译区结合后,GW182可与PABP和CCR4-Not复合体结合,促进mRNA脱腺苷酸。另外PABP也调控无义介导的mRNA降解途径,当PABP和终止密码子距离接近时其可与释放因子结合而维持mRNA的稳定,当mRNA中提早出现终止密码子时,PABP与终止密码子距离较远,释放因子改与Upf1结合以启动NMD途径,抑制转译并将mRNA降解。在细胞核中PABP参与多腺苷酸尾合成的反应,mRNA转录结束后,切割和聚腺苷酸特异性因子会与mRNA上的多腺苷酸尾信号和PABP、多聚腺苷酸聚合酶等蛋白结合,促进后者合成多腺苷酸尾,PABP可与新生成的多腺苷酸尾结合以保护mRNA不被降解。
反式作用干扰小RNA是陆生植物的一类小干扰RNA,可进行RNA干扰,抑制其他基因的基因表现。tasiRNA最早于2004年在模式生物阿拉伯芥中发现,植物有TAS1、TAS2、TAS3与TAS4四个基因家族的基因编码tasiRNA,这些基因转录产生的RNA后会被多腺苷酸化,在MiRNA介导之下TAS1、TAS2与TAS4转录的RNA5'端会被Ago1切割,TAS3转录的RNA则是3'端被Ago7切割,接着此RNA由RNA复制酶RDR6转为双股RNA后,再被DCL4切割成长21核碱基且3'端有突出端的小双股RNA,可与RNA诱导沉默复合体结合以进行RNA干扰,将目标MRNA的切割移除。
反式作用干扰小RNA是陆生植物的一类小干扰RNA,可进行RNA干扰,抑制其他基因的基因表现。tasiRNA最早于2004年在模式生物阿拉伯芥中发现,植物有TAS1、TAS2、TAS3与TAS4四个基因家族的基因编码tasiRNA,这些基因转录产生的RNA后会被多腺苷酸化,在MiRNA介导之下TAS1、TAS2与TAS4转录的RNA5'端会被Ago1切割,TAS3转录的RNA则是3'端被Ago7切割,接着此RNA由RNA复制酶RDR6转为双股RNA后,再被DCL4切割成长21核碱基且3'端有突出端的小双股RNA,可与RNA诱导沉默复合体结合以进行RNA干扰,将目标MRNA的切割移除。
反式作用干扰小RNA是陆生植物的一类小干扰RNA,可进行RNA干扰,抑制其他基因的基因表现。tasiRNA最早于2004年在模式生物阿拉伯芥中发现,植物有TAS1、TAS2、TAS3与TAS4四个基因家族的基因编码tasiRNA,这些基因转录产生的RNA后会被多腺苷酸化,在MiRNA介导之下TAS1、TAS2与TAS4转录的RNA5'端会被Ago1切割,TAS3转录的RNA则是3'端被Ago7切割,接着此RNA由RNA复制酶RDR6转为双股RNA后,再被DCL4切割成长21核碱基且3'端有突出端的小双股RNA,可与RNA诱导沉默复合体结合以进行RNA干扰,将目标MRNA的切割移除。